On the left coquotient with respect to meet for pretorsions in modules

Ion Jardan

Abstract

In [2] the operation of left coquotient with respect to meet for preradicals of R-Mod is defined. In the present short notice the particular case of pretorsions of R-Mod is considered. We prove that for pretorsions the studied operation coincides with the operation (called right residual) introduced and investigated by J.S.Golan ([1]) in the terms of preradical filters of R. For that it is necessary to show the concordance of the studied operation with the transition $r \rightsquigarrow \mathcal{E}_r$ from pretorsions of R-Mod to the preradical filters of the ring R.

Keywords: module, pretorsion, filter, left coquotient.

Let R be a ring with unity and R-Mod be the category of unitary left R-modules. By definition a pretorsion is a hereditary preradical. We denote by \mathbb{PT} the set of all pretorsions of the category R-Mod. It is well known the description of pretorsions by preradical filters.

Definition. The set of left ideals $\mathcal{E} \subseteq \mathbb{L}(_{R}R)$ is called precadical filter (left linear topology) if it satisfies the following conditions:

(a₁) If $I \in \mathcal{E}$ and $a \in R$, then $(I : a) = \{x \in R \mid xa \in I\} \in \mathcal{E};$

(a₂) If $I \in \mathcal{E}$ and $I \subseteq J, J \in \mathbb{L}(_{R}R)$, then $J \in \mathcal{E}$;

(a₃) If $I, J \in \mathcal{E}$, then $I \cap J \in \mathcal{E}$.

There exists a monotone bijection between the pretorsions of R-Mod and preradical filters of $\mathbb{L}(_{R}R)$ defined by the mappings:

 $\begin{array}{ll} r \rightsquigarrow \mathcal{E}_r, & \mathcal{E}_r = \{I \in \mathbb{L}(_R R) \mid r(R/I) = R/I\}; \\ \mathcal{E} \rightsquigarrow r_{\mathcal{E}}, & r_{\mathcal{E}}(M) = \{m \in M \mid (0:m) \in \mathcal{E}\} \ ([3], [4]). \end{array}$

^{©2017} by Ion Jardan

We denote by \mathbb{PF} the set of all preradical filters of the lattice $\mathbb{L}(_RR)$ of left ideals of R. The sets \mathbb{PT} and \mathbb{PF} can be considered as complete lattices and the mappings indicated above determine an isomorphism of these lattices: $\mathbb{PT} \cong \mathbb{PF}$.

We mention that in the lattice \mathbb{PT} the product of two pretorsions $r \cdot s$ coincides with their meet $r \wedge s$.

In $\mathbb{PT}(\wedge, \vee)$ we also have the operation r # s defined by the rule $[(r \# s) (M)]/s (M) = r (M/s (M)), M \in R$ -Mod and r # s is called the *coproduct* of pretorsions r and s.

In a similar way is introduced in \mathbb{PF} the notion of coproduct:

 $\mathcal{E}_r \# \mathcal{E}_s = \{I \in \mathbb{L}(_R R) \mid \exists H \in \mathcal{E}_r, I \subseteq H \text{ such that } (I:a) \in \mathcal{E}_s, \forall a \in H\}.$ So we have the isomorphic lattices $\mathbb{PT}(\land,\lor,\#)$ and $\mathbb{PF}(\land,\lor,\#)$

with the following properties:

$$\mathcal{E}_{\substack{\alpha \in \mathfrak{A} \\ \alpha \in \mathfrak{A}}} r_{\alpha} = \bigwedge_{\alpha \in \mathfrak{A}} \mathcal{E}_{r_{\alpha}}; \quad \mathcal{E}_{\substack{\vee \\ \alpha \in \mathfrak{A}}} r_{\alpha} = \bigvee_{\alpha \in \mathfrak{A}} \mathcal{E}_{r_{\alpha}}.$$

Now we remind some notions and results of the monograph [1], where the pretorsions of R-Mod are investigated by the point of view of the associated preradical filters. In [1] \mathbb{PF} is denoted by R - filand the operation of *multiplication* in R - fil is defined by the rule: $KK' = \{I \in \mathbb{L}(RR) \mid \exists H \in K', \text{ such that } I \subseteq H \text{ and } (I:a) \in K, \forall a \in H\},$ where $K, K' \in R - fil$.

It is easy to see that in our notations for every $r, s \in \mathbb{PT}$ we have $\mathcal{E}_s \mathcal{E}_r = \mathcal{E}_r \# \mathcal{E}_s$. All properties of the operation of multiplication easily can be translated in the language of coproduct, in particular associativity and distributivity:

$$\mathcal{E}_1 \# (\mathcal{E}_2 \# \mathcal{E}_3) = (\mathcal{E}_1 \# \mathcal{E}_2) \# \mathcal{E}_3; \quad (\bigwedge_{\alpha \in \mathfrak{A}} \mathcal{E}_{r_\alpha}) \# \mathcal{E} = \bigwedge_{\alpha \in \mathfrak{A}} (\mathcal{E}_{r_\alpha} \# \mathcal{E}).$$

Using the product KK' of preradical filters, in [1] is defined *right* residual $K'^{-1}K$ of K by K' as the unique minimal preradical filter K'' in R - fil satisfy $K'K'' \supseteq K$. By the distributivity such a filter always exists and is equal to $\bigcap \{K'' \mid K'K'' \supseteq K\}$. In the book [1] a series of properties of this operation is exposed.

Translating in our notations and making the necessary changes (multiplication versus coproduct) we obtain the following statements.

Let $\mathcal{E}_1, \mathcal{E}_2 \in \mathbb{PF}$. Left coquotient with respect to meet of \mathcal{E}_1 by

 \mathcal{E}_2 is called the minimal preradical filter \mathcal{E} such that $\mathcal{E} \# \mathcal{E}_2 \supseteq \mathcal{E}_1$ or $\bigwedge \{ \mathcal{E} \in \mathbb{PF} \mid \mathcal{E} \# \mathcal{E}_2 \supseteq \mathcal{E}_1 \}$. The distributivity ensures the existence of this coquotient, denoted by $\mathcal{E}_1 \swarrow \mathcal{E}_2 ([2])$.

Now we will show that this preradical filter coincides with the preradical filter of the pretorsion $r_{\varepsilon_1} \gamma_{\#} r_{\varepsilon_2}$.

Lemma. If $r, s \in \mathbb{PT}$, then $\mathcal{E}_{r \# s} = \mathcal{E}_r \# \mathcal{E}_s$.

Proof. Firstly we specify the expressions of pretorsions determined by indicated preradical filters, using that $r(M) = \{m \in M \mid (0 : m) \in \mathcal{E}_r\}$ for every $r \in \mathbb{PT}$ and $M \in R$ -Mod.

The preradical filter $\mathcal{E}_{r \# s}$ is determined by the pretorsion r # sand $(r \# s)(M) = \{m \in M \mid (m + s(M)) \in r(M/s(M))\}$. But $r(M/s(M)) = \{x + s(M) \mid x \in M \text{ and } (0 : (x + s(M))) \in \mathcal{E}_r\} =$ $= \{x + s(M) \mid x \in M \text{ and } (s(M) : x) \in \mathcal{E}_r\}$, so we have (r # s)(M) = $= \{m \in M \mid (s(M) : m) \in \mathcal{E}_r\}$.

We denote by t the pretorsion of R-Mod defined by $\mathcal{E}_r \# \mathcal{E}_s$, so for every $M \in R$ -Mod we have $t(M) = \{m \in M \mid (0:m) \in \mathcal{E}_r \# \mathcal{E}_s\} =$ $= \{m \in M \mid \exists H \in \mathcal{E}_r, (0:m) \subseteq H \text{ such that } ((0:m):a) \in \mathcal{E}_s, \forall a \in H\} =$ $= \{m \in M \mid \exists H \in \mathcal{E}_r, (0:m) \subseteq H \text{ such that } (0:am) \in \mathcal{E}_s, \forall a \in H\}.$

Now we verify the equality of lemma.

 (\subseteq) It is sufficient to show that $r \# s \leq t$. For every $M \in R$ -Mod if $m \in (r \# s)(M)$, then $H = (s(M) : m) \in \mathcal{E}_r$ and $(0 : m) \subseteq \subseteq (s(M) : m) = H$. So if $a \in H$, then $am \in s(M)$, i.e. $(0 : am) \in \mathcal{E}_s$, which means that $m \in t(M)$. Therefore $(r \# s)(M) \subseteq t(M)$ for every $M \in R$ -Mod, i.e. $r \# s \leq t$, which implies $\mathcal{E}_{r \# s} \subseteq \mathcal{E}_r \# \mathcal{E}_s$.

 (\supseteq) We verify that $t \leq r \# s$. Let $M \in R$ -Mod and $m \in t(M)$. Then there exists $H \in \mathcal{E}_r$ such that $(0:m) \subseteq H$ and $(0:am) \in \mathcal{E}_s, \forall a \in H$. If $a \in H$, then $(0:am) \in \mathcal{E}_s$, so $am \in s(M)$, i.e. $a \in (s(M):m)$, therefore $H \subseteq (s(M):m)$. From the definition of preradical filter (condition (a_2)) since $H \in \mathcal{E}_r$ now we have $(s(M):m) \in \mathcal{E}_r$, which means that $m \in (r \# s)(M)$. This proves that $t(M) \subseteq (r \# s)(M)$ for every $M \in R$ -Mod, therefore $t \leq r \# s$ and so $\mathcal{E}_r \# \mathcal{E}_s \subseteq \mathcal{E}_{r \# s}$. \Box **Proposition.** For every pretorsions $r, s \in \mathbb{PT}$ we have:

Proof. (\supseteq) By definition $\mathcal{E}_r \not\cong \mathcal{E}_s = \bigwedge \{ \mathcal{E} \in \mathbb{PF} | \mathcal{E} \# \mathcal{E}_s \supseteq \mathcal{E}_r \}$, i.e.

it is the least preradical filter with the property $\mathcal{E} \# \mathcal{E}_s \supseteq \mathcal{E}_r$. From the Lemma $\mathcal{E}_r \wedge_{\# s} \# \mathcal{E}_s = \mathcal{E}_{(r \wedge_{\# s}) \# s}$ and since $(r \wedge_{\# s}) \# s \ge r$ ([2]) we have $\mathcal{E}_{(r \wedge_{\# s}) \# s} \supseteq \mathcal{E}_r$, so $\mathcal{E}_r \wedge_{\# s} \# \mathcal{E}_s \supseteq \mathcal{E}_r$. Therefore $\mathcal{E}_r \wedge_{\# s}$ is one of preradical filter \mathcal{E} and so $\mathcal{E}_r \wedge_{\# s} \supseteq \bigwedge {\mathcal{E} \in \mathbb{PF} | \mathcal{E} \# \mathcal{E}_s \supseteq \mathcal{E}_r}$, i.e. $\mathcal{E}_r \wedge_{\# s} \supseteq \mathcal{E}_r \wedge_{\#} \mathcal{E}_s$. (\subseteq) Let \mathcal{E}_t be preradical filter defined by pretorsion t with the property $\mathcal{E}_t \# \mathcal{E}_s \supseteq \mathcal{E}_r$. From the Lemma $\mathcal{E}_{t \# s} \supseteq \mathcal{E}_r$, therefore $t \# s \ge r$.

Since $r \uparrow_{\#} s$ is the least pretorsion h with the property $h \# s \ge r$ ([2]) it follows that $r \uparrow_{\#} s \le t$ i.e. $\mathcal{E}_r \uparrow_{\#} s \subseteq \mathcal{E}_t$. So $\mathcal{E}_r \uparrow_{\#} s$ is the least between preradical filters \mathcal{E} with the property $\mathcal{E} \# \mathcal{E}_s \supseteq \mathcal{E}_r$. \Box

As a conclusion we can affirm that all results of J.S.Golan [1] about the operation of right residual of preradical filters can be treated as a particular case of the operation of left coquotient with respect to meet, defined in [2] in general case of preradicals of $M \in R$ -Mod.

References

- J.S. Golan, *Linear topologies on a ring.* Logman Scientific and Technical, New York, 1987.
- [2] I. Jardan, On a new operation in the class of preradicals of modules. Conf. MITRE-2016(Abstracts), Chişinău.
- [3] A.I. Kashu, Radicals and torsions in modules. Ştiinţa, Kishinev, 1983 (in Russian).
- [4] L. Bican, T. Kepka, P. Nemec, *Rings, modules and preradicals*, Marcel Dekker, New York, 1982.

Ion Jardan

Technical University of Moldova. Institute of Mathematics and Computer Science Academy of Sciences of Moldova

Email: jordanion79@gmail.com; ion.jardan@mate.utm.md