About one special inversion matrix of non-symmetric n-IP-loop

Leonid Ursu

Abstract

It is known that n-IP-quasigroups have more than one inversion matrix [1]. It is proved that one of these inversion matrices in the class of non-symmetric n-IP-loops is so-called matrix $[I_{ij}]$ of permutations, any of which has order two and fixes the unit element of the loop.

Keywords: quasigroup, loop, n-IP-quasigroup, n-IP-loop, inversion permutation, inversion matrix, isostrophism.

1 Main concepts and definitions

A quasigroup Q(A) of arity $n, n \geq 2$, is called an n-IP-quasigroup if there exist permutations $\nu_{ij}, i, j \in \overline{1,n}$ of the set Q, such that the following identities are true:

$$A(\{\nu_{ij}x_j\}_{j=1}^{i-1}, A(x_1^n), \{\nu_{ij}x_j\}_{j=i+1}^n) = x_i,$$
(1)

for all $x_1^n \in Q^n$, where $\nu_{ii} = \nu_{i\,n+1} = \varepsilon$. Here ε denotes the identity permutation of the set Q [1]. See [1] for more information on n-ary quasigroups.

The matrix

$$\begin{bmatrix} \nu_{ij} \end{bmatrix} = \begin{bmatrix} \varepsilon & \nu_{12} & \nu_{13} & \dots & \nu_{1n} & \varepsilon \\ \nu_{21} & \varepsilon & \nu_{23} & \dots & \nu_{2n} & \varepsilon \\ \dots & \dots & \dots & \dots & \dots \\ \nu_{n1} & \nu_{n2} & \nu_{n3} & \dots & \varepsilon & \varepsilon \end{bmatrix}$$

^{©2017} by Leonid Ursu

is called an inversion matrix for a n-IP-quasigroup, the permutations $\nu_{i,j}$ are called inversion permutations. Any i-th row of an inversion matrix is called i-th inversion system for a n-IP-quasigroup.

The least common multiple (LCM) of orders of permutations of i-th inversion system is called the order of this system. The least common multiple (LCM) of orders of all inversion systems is called the order of inversion matrix.

The operation

$$B(x_1^n) = \alpha_{n+1}^{-1} A(\alpha_1 x_1, \dots, \alpha_n x_n),$$

for all $x_1^n \in Q$, where α_1^{n+1} are permutations of the set Q, is called an isotope of the n-ary quasigroup Q(A). If A = B, then we have an autotopy of the n-ary quasigroup Q(A).

Recall that an n-ary quasigroup is an n-ary groupoid Q(A), such that in the equality $A(x_1, x_2, \ldots, x_n) = x_{n+1}$ any n elements of the set $\{x_1, x_2, \ldots, x_n, x_{n+1}\}$ uniquely specifies the remaining one [1]. Therefore we can define a new quasigroup operation

$$^{\pi_i}A(x_1^{i-1}, x_{n+1}, x_{i+1}^n) = x_i, \tag{2}$$

that is called the *i*-th inverse operation of the operation A.

Let σ be a permutation of a set that consists from (n+1) elements. The operation

$$^{\sigma}A(x_{\sigma 1}^{\sigma n}) = x_{\sigma(n+1)}$$

is called the σ -parastrophe of the operation A. If $\sigma(n+1) = n+1$, then we call this parastrophe a main parastrophe.

Isostrophy is a combination of an isotopy T and a parastrophy σ , i.e., an isostrophic image of an n-ary quasigroup Q(A) is a parastrophic image of its isotopic image, and it is denoted by $A^{(\sigma,T)}$. If $A^{(\sigma,T)} = A$, then the pair (σ,T) is called an autostrophy of the n-ary quasigroup Q(A) [1].

From identity (1) it follows that, for n-ary-IP-quasigroup Q(A), the expression $T_i^2 = (\varepsilon, \nu_{i2}^2, \nu_{i3}^2, \dots, \nu_{ii-1}^2, \varepsilon, \nu_{ii+1}^2, \nu_{in}^2, \varepsilon)$ is an autotopy of the n-ary quasigroup Q(A).

Therefore

$$^{\pi_i}A = A^{T_i} \tag{3}$$

and

$$A^{(\pi_i, T_i)} = A \tag{4}$$

for all $i \in \overline{1, n}$. Any of equalities (3) and (4) defines an n-IP-quasigroup. Below, for convenience, we denote the operation A by ().

An element e is called a unit of the n-ary operation Q(), if the following equality is true: $(\stackrel{i-1}{e},x,\stackrel{n-i}{e})=x$, for all $x\in Q$ and $i\in\overline{1,n}$. n-Ary quasigroups with unit elements are called n-ary loops [1,2]. Loops of arity n>2 can have more than one unit element [1]. n-IP-quasigroups with an least one unit element are called n-IP-loops [2,3].

Permutations I_{ij} of the set Q are defined by the equalities

$$(e^{i-1}, x, e^{j-i-1}, I_{ij}x, e^{n-j}) = e,$$

for all $x \in Q$ and $i, j \in \overline{1, n}$.

If the tuple $(\varepsilon, \nu_{12}, \nu_{13}, \dots, \nu_{1n}, \varepsilon)$ is the first inversion system of n-IP-quasigroup Q(), with the inversion matrix $[\nu_{ij}]$, then the tuple

$$(\varepsilon, \nu_{12}^{2n-1}, \nu_{13}^{2n-1}, \dots, \nu_{1n}^{2n-1}, \varepsilon),$$

is also an (first) inversion system, since the tuple $(\varepsilon, \nu_{12}^{2n}, \nu_{13}^{2n}, \dots, \nu_{1n}^{2n}, \varepsilon)$ is an autotopy of the quasigroup Q(). This is true for other $(i = 2, 3, \dots)$ inversion systems.

Consider the matrix

$$\begin{bmatrix} I_{ij} \end{bmatrix} = \begin{bmatrix} \varepsilon & I_{12} & I_{13} & \dots & I_{1n} & \varepsilon \\ I_{21} & \varepsilon & I_{23} & \dots & I_{2n} & \varepsilon \\ \dots & \dots & \dots & \dots & \dots \\ I_{n1} & I_{n2} & I_{n3} & \dots & \varepsilon & \varepsilon \end{bmatrix}$$

An *n*-Quasigroup Q(A) is called symmetric, if $A(x_{\varphi_1}^{\varphi_n}) = A(x_1^n)$, for all $\varphi \in S_n$, where S_n is the symmetric group defined on the set Q, otherwise it is called non-symmetric [2, 3].

2 Main results

The first constructed example of an 3-IP-loop have the inversion matrix $[I_{ij}]$. V.D. Belousov proposed the following problem: is it true that any n-IP-loop has among inversion matrices the matrix $[I_{ij}]$?

Lemma. If Q() is a non-symmetric n-IP-loop with the inversion matrix $[\nu_{ij}]$ and unit e, then any non-identity inversion permutation from any inversion matrix of even order does not fix the unit element e.

Corollary. If Q() is a non-symmetric n-IP-loop with the inversion matrix $[\nu_{ij}]$ and unit e, then any non-identity inversion permutation from any inversion matrix of odd order fix the unit element e.

Theorem. The matrix $[I_{ij}]$ is one of the inversion matrices in any non-symmetric n-IP-loop.

References

- [1] V.D. Belousov. n-Ary Quasigroups, Stiintsa, Kishinev, (1971).
- [2] L.A. Ursu. *n*-Ary loop with the inverse property. *Matem. Issled.*, vyp. 113, Ştiinţa, Chişinău, 1990, pp. 108–118 (Russian).
- [3] L.A. Ursu. About one of inverse matrices of a nonsymmetric *n*-IP-loop. *CAIM*, Communications, Chişinău, 2012, p. 216.
- [4] L.A. Ursu. About one special inversion matrix of 3-ary and 4-ary IP-loops. The Third Conference of Mathematical Society of the Republic of Moldova, Chişinău, 2014, pp. 166–169.

Leonid Ursu

Assistant Professor/Moldova State Technical University

Email: matematica@mail.utm.md