1 2 3	Crystal structure of HgGa ₂ Se ₄ under compression
4	Oscar Gomis, ^{a,*} Rosario Vilaplana, ^a Francisco Javier Manjón, ^b David Santamaría-
5	Pérez, c,d Daniel Errandonea, Eduardo Pérez-González, Javier López-Solano, Plácida
6	Rodríguez-Hernández, e Alfonso Muñoz, e Ion Mihail Tiginyanu, f and Veaceslav
7	Vladimir Ursaki ^f
8 9	^a Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica, MALTA Consolider Team,
10	Universitat Politècnica de València, 46022 València, Spain
11	^b Instituto de Diseño para la Fabricación y Producción Automatizada, MALTA Consolider
12	Team, Universitat Politècnica de València, 46022 València, Spain
13	^c Departamento de Química Física I, Universidad Complutense de Madrid, MALTA Consolider
14	Team, Avenida Complutense s/n, 28040 Madrid, Spain
15	^d Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universidad de
16	Valencia, Edificio de Investigación, C/Dr. Moliner 50, Burjassot, 46100 Valencia, Spain
17	^e Departamento de Física Fundamental II, Instituto de Materiales y Nanotecnología, MALTA
18	Consolider Team, Universidad de La Laguna, 38205 Tenerife, Spain
19	^f Institute of Applied Physics, Academy of Sciences of Moldova, 2028 Chisinau, Moldova
20 21	* Corresponding author. Tel.: +34 96 652 8426; fax: +34 96 652 8485.
22	E-mail address: osgohi@fis.upv.es (Oscar Gomis)
23	Dr. Oscar Gomis
24	Departamento de Física Aplicada
25	Escuela Politécnica Superior de Alcoy
26	Universitat Politècnica de València
27	Placeta Ferrandiz Carbonell 2
28	03802 Alcoy (Alicante)
29	Snain

Abstract

We report on high-pressure x-ray diffraction measurements up to 17.2 GPa in mercury digallium selenide (HgGa₂Se₄). The equation of state and the axial compressibilities for the low-pressure tetragonal phase have been determined and compared to related compounds. HgGa₂Se₄ exhibits a phase transition on upstroke towards a disordered rock-salt structure beyond 17 GPa, while on downstroke it undergoes a phase transition below 2.1 GPa to a phase that could be assigned to a metastable zinc-blende structure with a total cation-vacancy disorder. Thermal annealing at low- and high-pressure shows that kinetics plays an important role on pressure-driven transitions.

- **Keywords:**
- A. Chalcogénides
- C. High-pressure
- C. X-ray diffraction
- D. Crystal structure
- D. Phase transitions

PACS numbers: 61.05.cp, 61.50.Ks, 62.50.-p, 64.70.kg

1. Introduction

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

56

Mercury digallium selenide (HgGa₂Se₄) is one of the less studied adamantinetype $A^{II}B_2^{III}X_4^{VI}$ ordered-vacancy compounds (OVCs). It crystallizes in the tetragonal defect-chalcopyrite (DC) structure with space group (SG) I-4, Z=2 [see Fig. 1(a)]. Adamantine OVCs are tetrahedrally-coordinated semiconductors which have an unoccupied cationic site [1, 2]. The presence of vacancies results in a complex physics and explains why OVCs have been scarcely studied. A common feature of them is that they have several non-equivalent tetrahedrally-coordinated cations resulting in a distortion of the crystal lattice from the cubic symmetry. This fact, their anisotropy, and their band-gap energies make them suitable for many technological applications [3, 4]. High-pressure (HP) studies on $A^{II}B_2^{III}X_4^{VI}$ compounds are receiving increasing attention in the last years [3-20]. In particular, ternary selenide compounds have been recently studied [3, 4, 6 - 10, 12 - 20]. However, to our knowledge, only one work has been devoted to HgGa₂Se₄ [3], being focused on optical properties. In order to improve the knowledge of the HP behaviour of AGa₂Se₄ compounds, we report here synchrotron XRD measurements in HgGa₂Se₄. In particular, we show evidence of the presence of two new phases. They can be probably assigned to a disordered rock-salt (DR) structure

76

77

78

79

80

2. Experimental section

43m, Z=1) [see **Fig. 1(c)**].

Single crystals of DC-HgGa₂Se₄ have been grown from its constituents HgSe and Ga₂Se₃ by chemical vapor transport method using iodine as a transport agent [21]. Chemical and structural analyses have shown the stoichiometric composition of the

(SG: Fm-3m, Z=1) [see Fig. 1(b)] and a disorder zinc-blende (DZ) structure (SG: F-