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,

Let us consider the cubic system of differential equations

dx

dt
= P1(x, y) + P2(x, y) + P3(x, y) = P (x, y),

dy

dt
= Q1(x, y) +Q2(x, y) +Q3(x, y) = Q(x, y), (1)

where Pi(x, y), Qi(x, y) are homogeneous polynomials of degree i in x and y with real coefficients.
The following GL(2,R)-comitants [1] have the first degree with respect to the coefficients of the
system (1):

Ri = Pi(x, y)y −Qi(x, y)x, Si =
1

i

(
∂Pi(x, y)

∂x
+
∂Qi(x, y)

∂y

)
, i = 1, 2, 3. (2)

The definition of the transvectant of two polynomials is well known in the classical invariant theory
[2].

Definition. Let f(x, y) and ϕ(x, y) be homogeneous polynomials in x and y with real coeffi-
cients of the degrees ρ ∈ N∗ and θ ∈ N∗, respectively, and k ∈ N∗. The polynomial

(f, ϕ)(k) =
(ρ− k)!(θ − k)!

ρ!θ!

k∑
h=0

(−1)h
(
k

h

)
∂kf

∂xk−h∂yh
∂kϕ

∂xh∂yk−h

is called the transvectant of the index k of the polynomials f and ϕ.
Remark. If the polynomials f and ϕ are GL(2,R)-comitants of the degrees ρ ∈ N∗ and

θ ∈ N∗, respectively, for the system (1), then the transvectant of the index k ≤ min(ρ, θ) is a
GL(2,R)-comitant of the degree ρ+θ−2k for the system (1). If k > min(ρ, θ), then (f, ϕ)(k) = 0.

By using the transvectants for the system (1) the following GL(2,R)-invariants were con-
structed:

I1 = S1, I2 = (R1, R1)(2), I4 = (R1, S3)(2).

The system (1) can be written in the following coefficient form:

dx

dt
= cx+ dy + gx2 + 2hxy + ky2 + px3 + 3qx2y + 3rxy2 + sy3,

dy

dt
= ex+ fy + lx2 + 2mxy + ny2 + tx3 + 3ux2y + 3vxy2 + wy3. (3)

In this paper only the cubic differential systems (1) ( or (2)) with S2 ≡ 0, I1 = 0 and I2 > 0
were considered.
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By using a center-affine transformation and time scaling the system (3) with I1 = 0, I2 > 0
and S2 ≡ 0 can be reduced to the form:

dx

dt
= y + gx2 + 2hxy + ky2 + px3 + 3qx2y + 3rxy2 + sy3,

dy

dt
= − x+ lx2 − 2gxy − hy2 + tx3 + 3ux2y − 3qxy2 + wy3. (4)

In this paper the sufficient center conditions for the origin of coordinates of the phase plane for
the cubic differential system with I1 = 0, I2 > 0, S2 ≡ 0 were established.

Theorem. The system (4) has singular point of the center type in the origin of the coordinates,
if w = −p− r − u (I4 = 0) and one of the series of the conditions

1) p+ u = 0;

2) k − l = g + h = r + u = s+ t = 0;

3) k + l = g − h = r + u = s+ t = 0

is fulfilled.
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We consider the Newtonian restricted eight bodies problem with incomplete symmetry. We
investigate the linear stability of this configuration by some numerical methods. For geometric pa-
rameter intervals of stability and instability are found, the corresponding theorem are formulated
and proved. All relevant and numerical calculation are done with the computer algebra system
Mathematica.
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