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Abstract. In this paper the Fresnel’s formula are generalized to the case of a two-

dimensional (2D) self-healing beam incident on the interface of the vacuum with a 

nonmagnetic, homogeneous on average and isotropic nanostructured medium with 

spatial dispersion. This approach is used for simplifying the problem of finding 

effective parameters of the nanostructured medium. It is found that, although the 2D 

beam can have only a finite length and finite energy in contrast to the 3D one, 

conditions are provided for the conservation of beam configuration and for ensuring 

his self-healing properties. 

Key words: nanostructured medium, self-healing beam, reflection/refraction, 

scattering indicatrix, dielectric function, additional boundary 

conditions, longitudinal/transverse mode. 

1. INTRODUCTION 

Fabrication and investigation of various nanostructured media has been of 

increasing interest in the last decade. Particularly, development of new methods for 

investigating nanostructured materials is of a great importance for today`s 

technologies. Usually, a nanostructured medium represents a complex 

heterogeneous system composed of different components. The scattering of light at 

the boundaries of inhomogeneities and the related complex physical processes 

hinders finding of averaged parameters of such a medium [1–3]. Using self-healing 

beams (for instance Bessel beams) allows one to avoid such difficulties [4]. 

We propose in this paper to make use of 2D self-healing, non-diffractive 

beams, with dimensionality like the Fresnel equations, to simplify the issue of 

finding the effective parameters when probing a nanostructured medium. 
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2. MATHEMATICAL MODEL OF BEAM REFLECTION  

FORM THE INTERFACE OF THE NANOSTRUCTURED MEDIUM 

We will use in the section a generalization [5] of the mathematical model of 

nanostructured medium [3] for the case of a non-magnetic and, on average, a 

homogeneous and isotropic porous medium [3]. A phenomenological approach will 

be applied, based on using the dielectric function of inhomogeneous medium ε(r,t). 

For a medium with spatial dispersion one can write [6]: 
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With such a choice of ),(~  kik


, different modes of electromagnetic 

oscillations will exist in the system: the usual bright modes (transversal 

oscillations) with two types of polarizations, which interact with matter by means 

of the effective parameter eff [6], and the dark (longitudinal) mode described by 

the wave vector h, which interacts with matter by means of the effective parameter 

 111
][ 

 effCoul  , (6) 

where 

 )]1(1[ 1   fCoul , (7) 

f is the ration of the material content in the porous medium as compared to the 

vacuum content, ε is the dielectric constant of the material [5]. 

The Green’s function for the potential )( rrG 


is actually the modified 

Coulomb’s law for the given medium 
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Note that the field near any charge, including the one bound at the interface 

of media, splits into two terms: 
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so that each of modes give an independent contribution to the formation of the total 

charge field, according to the effective dielectric constants of each mode εeff, η. 

At the same time, the above mentioned phenomenological approach does not 

allow one to estimate the value of dark mode wave vector h. Dark modes of the 

type used in this paper can exist in 3D systems with elements of 1D structure 

(cylinders, channels, pores, etc.) [7]. We will consider for simplicity that the 

porous system can generally be described as a set of 2D lattices filling the 3D 

space and being oriented at various angles with respect to each other. A formula 

from ref. [3] is used for estimations. 

The phenomena of reflection/refraction on the surface of porous material 

should be considered in details for a quantitative description of the beam reflection, 

when al list two types of modes can exist independently of each other in a medium. 

Recall that in a classical Fresnel problem only one type of modes, namely 

the transversal ones, are taken into consideration, and two boundary conditions for 

the electric E and magnetic H fields are enough to be used for the problem of 

reflection/refraction. The conservation of tangential components of Ey and Hx for 

the s-polarization, and Ex and Hy for the p-polarization should be considered when 

using the notations from ref. [6]. 

In our case, if two different types of modes do exist in the porous material, it 

is enough to introduce only one additional boundary condition (ABC). Further, the 

problem will be solved by finding the reflection coefficient R for the plane 

transversal wave incident from the vacuum on the surface of porous material for 

different polarizations and different types of the porous material. It was shown in a 

previous study [3] that there is only one reflected (r) wave in the vacuum for a 

transversal wave incident from the vacuum on the vacuum/porous material 

boundary for the p-polarization, and this reflected wave is also transversal. At the 

same time there are both the transversal (T) and longitudinal (L) components for 

the transmitted (t) wave in the porous medium (Fig. 1). 
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Fig. 1 – The diagram of the reflection/refraction of the incident (i) transversal wave from the vacuum 

on the vacuum/porous material boundary for the p-polarization. 

The basic relations used for electric and magnetic fields for the “bright” and 

“dark” modes in the porous medium for the p-polarization can be presented as 

follows. 

1. For the usual transverse wave (“bright” mode): 
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where {x,y,z} is a vector, 0k =ω/с is the numeric value of the wave vector in 

vacuum, Zo = √μo/εo = 376.6 Ω is the vacuum impedance, ,  

С is a coefficient determined from the solution of the following linear equation: 
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where, for instance, the first column describes the transmitted longitudinal wave, 

the last column describes the incident transverse wave, the first row is for the 

components of the electric field (Ex) etc.  

2. For the longitudinal wave (“dark” mode): 
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According to ref. [3], the value of the dark mode wave vector h is defined as 

follows: 
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where 

 /1 ffh . (14) 

3. ADDITIONAL BOUNDARY CONDITIONS  

AND THE REFLECTION COEFFICIENT 

The component of the polarization perpendicular to the surface of the 

medium at the boundary of the porous medium with the vacuum has to be equal to 

zero [8]. We will use additional boundary condition in the form of 

   0
P


, (15) 

where  

 )( dw PPP


  (16) 

is the electrical polarization of the medium at the boundary with the vacuum, 

summarized for all the modes. 

The Eq. (15) transforms to a trivial identity 0≡0 in the case of s-polarization, 

which means that the longitudinal wave is not excited. In the case of p-polarization, 

the longitudinal wave is excited, but the polarization vector is differently expressed 

for the bright and dark modes. Therefore, we have 

 EP effw


)1(   , (17) 

for the transversal  bright mode, and  

 EPd

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for the longitudinal dark  mode. 
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The nanostructured medium constituted from a material with dielectric 

constant  and the concentration f, and from vacuum with concentration (1-f), can 

be considered as a metamaterial with some effective parameters. In the case of 

absence of dark modes, the nanostructured medium is described by usual effective 

parameters [9]. In the presence of a dark mode with parameters h, εeff, η, additional 

boundary conditions are used at the boundary of the medium, as discussed above 

Eq. (15). In such a case, the reflection coefficient from the nanostructured medium 

is calculated from the matrix presenting the linear Eq. (11), and it is given by the 

following expression: 
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The reflected ray shifts to different directions depending on the sign of the 

refraction index (Fig. 3). The observed virtual image of the light source also shifts 

in different directions relative to the mirror image at the interface medium/vacuum. 

4. DISTRIBUTION OF THE ELECTRIC FIELD INTENSITY  

FOR A TWO-DIMENSION SELF-HEALING BEAM 

Our further calculations will be performed for a coherent light source 

emitting in the z direction [10]. The 2D wavefield of the beam is described by the 

following formula 

 
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where  
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ρ and θ are the polar coordinates, z = ρ·cosθ, A = E(H) is the electrical(magnetic) 

field perpendicular to the ZOX plane, ))M((arg)( )1(

lHl  , (.))1(

lH  is the Hankel 

function, and M >> 1. Using of the 2D self-healing non-diffractive beam is 

convenient for generalization of the Fressnel formula, which is also essentially 

two-dimensional. One can see that the self-healing beam of two types of 

polarization can obtain his properties at ρ ≈ M/k0 in a limited interval of 10
-2 

Mλ 

(Fig. 2). His width is of the order of λ and the width practically does not change 

when M→∞. 
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Fig. 2 – (a) Distribution of intensity for a 2D Gauss beam with S(l) ≡ 1) for M = 2000.  

(b) Distribution of intensity for a 2D self-healing beam with S(l) defined from equation (21)  

for M = 2000. 

The 2D self-healing beams feature their properties only on a finite length, for 

instance of 10λ100λ for М = 3·10
3
. However, the 3D beams actually have, in 

practice, also only a finite length. On the other hand, in contrast to 3D beams, the 
overall emission power of a 2D beam is finite even theoretically. 

The 2D beam upon scattering on the interface splits into separate plane 
waves, which can be detected at such distances from the interface, at which the 
Fraunhofer diffraction is usually observed. The fact that the beam is self-healing 
allows one to not take into consideration the scattering inside the nanostructured 
medium [4, 11], to neglect the phenomenon of back scattering, and to simplify the 
problem of finding the effective parameters of the nanostructured medium. 

5. SCATTERING OF THE 2D SELF-HEALING BEAM AT SMALL ANGLES  

OF INCIDENCE AT THE INTERFACE 

Each of the plane waves changes the component of the wave vector normal 
to the surface k┴ to a similar value but with opposite direction upon interaction 
with the interface. The amplitude of the wavefield changes proportionally to the R 
value from the Eq. (19) upon the reflection from the surface. 

The radiation beam represents by itself a waveguide for its energy. We 
assume in calculations that the components of the wave vectors along the beam 
axis are directed towards the direction of energy flow (Fig. 3). However, their 
values are different for different waves, since the geometrical sizes of beams are 
finite, and the value of k0 from Eq. (20) is just the module of the wave vector for 
any of plane waves constituting the beam. Therefore, first we find the components 
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of the wave vectors k┴ perpendicular to the beam axis, and then the components of 
the wave vectors k׀׀ along the beam axis. The components of the wave vectors k┴ 
perpendicular to the beam axis are found from the Fourier decomposition of the 
field amplitude distribution along the line perpendicular to the beam axis. 

 

Fig. 3 – Structure of the 2D self-healing beam. 

Figure 4c illustrates scattering indicatrix of a 2D self-healing beam for small 
angles of incidence at the interface with a nanostructured medium, calculated for 
different types of polarizations, such as s-polarization (black curve); p-polarization 
without taking into consideration the existence of black mode (blue curve); and  
p-polarization with taking into consideration the existence of black mode (red 
curve). The scattering indicatrix for the case of reflection from an ideally reflecting 
surface with R = –1 is shown in Fig. 4a for the purpose of comparison, and the 

indicatrix of scattering a plane wave by a strip with the width d =  is illustrated in 
Fig. 4b. One should notice that calculations shown that the indicatrix is practically 

not affected by introducing absorption in the medium at the level of  = 16 – 2i. 

 

Fig. 4 – (a) Scattering indicatrix for an ideally reflecting surface with R = –1. (b) Indicatrix  

of scattering a plane wave by a strip with the width d = . (c) Scattering indicatrix from an interface 

with nanostructured medium without absorption with  = 16 and f = 0.1: the black curve is  

for the case of s-polarization, the blue curve is for p-polarization without taking into consideration  

the existence of black mode, and the red curve is for p-polarization with taking into consideration  

the existence of black mode. 
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One can see from Fig. 4 that scattering of a 2D self-healing beam for small 

angles of incidence at the interface with an ideally reflecting interface occurs 

mainly in the direction of backscattering similarly to scattering a plane wave by a 

strip. The same is true for scattering a 2D beam with p-polarization by an interface 

with a nanostructured medium without taking into consideration the existence of 

the black mode. However, the scattering indicatrix is significantly modified if one 

takes into consideration the existence of the black mode. One can see that two 

scattering wings emerge in the direction nearly perpendicular to the incident beam 

direction, i.e. parallel to the interface. The wings are greatly enlarged in the case of 

s-polarization. 

6. CONCLUSIONS 

The results of this study based on generalization of the Fresnel`s formula to 

the case of a two-dimensional beam incident on the interface of the vacuum with a 

nonmagnetic, homogeneous on average and isotropic nanostructured medium with 

spatial dispersion show that the beam features properties of self-healing on a finite 

length, for instance of the order of 10 to 100 wavelengths for М = 3·10
3
.  

Using of a 2D self-healing beam allows one to avoid taking into 

consideration scattering inside the nanostructured medium and to neglect the 

phenomenon of backscattering, and therefore to substantially simplifies the 

problem of finding effective parameters of the nanostructured medium. Since a 

large number of various plane waves are summarily contained in the radiation upon 

scattering of the incident 2D beam, one can determine the effective parameters of 

the nanostructured medium from the measured scattering features. 
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