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1. INTRODUCTION 
 

The flywheel systems or “electromechanical 
batteries” were especially developed for energy 
storage systems in Hybrid Electric Vehicles (HEV) 
purposes. Flywheels seem to be highly appreciated 
in the design of HEV, because of they outperform 
conventional chemical batteries in many important 
areas, such as: shorter recharge time, longer driving 
range, higher reliability and practically absence of 
the maintenance. Moreover, in the last decade, in the 
power quality market the flywheel has regained 
consideration as a viable means of supporting a 
critical load during mains power interruption. 

The main drawback of the flywheel system is 
its relatively higher cost, but the technical 
development should significantly reduce the costs of 
such systems over time. 

In [1] and [2] the numeric control of a 
magnetic bearing destined to be included in a 
flywheel storage system was synthesized. The paper 
purpose is to develop the synthesized controller 
taking into account the disturbance influences of the 
other flywheel system components. 

 
 

2. THE FLYWHEEL STORAGE 
SYSTEM 

 
The electromechanical battery we are studied is 

composed by a magnetically suspended flywheel, a 
synchronous motor/alternator and an inductive 
position transducer (see fig.1). The magnetic 
suspension has only one active axis and is composed 
by two hybrid magnetic bearings that act as two 
electromagnets in opposition. The radial stiffness is 
assured by the minimum reluctance effect. In the 
case of the absence of any current through the coils, 
the radial stability is assured “passive” through the 
presence of the permanent magnets. The chosen 
drive machine is a disk-type permanent-magnet 
synchronous machine [4]. 

 
3. SYSTEM MODELING 

 
The equations that describe the working state of a 

hybrid axial magnetic bearing are: 

- the electric equilibrium equation of the circuitry 
constituted by the series connection of the two coils 
placed each one on the superior and, respectively, 
the inferior stator of the bearing 

)()( 21 Ψ+Ψ+⋅=
dt
diRtu t  (1) 

Where tR - the sum of the coil resistances, Ψ1, Ψ2 – 
the total fluxes in the two bearing components 
- the mechanical equilibrium equation: 
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where Frez = F1-F2 is the resultant force of the 
suspension electromagnets, Fext is the disturbing 
external force and m.g is the mobile part weight 
(including the entire shaft with the rotors of the 
motor and transducer). 

The disturbing force Fext is composed by an 
aleatory part and also by the residual forces from 
motor/alternator and transducer. For an accurate 
synthesis of the magnetic-suspension control system, 
the residual forces must be evaluated. 

As concern the permanent magnet disk-rotor 
machine, their influence is low because of the 
permanent magnets that are much thicker (5 mm) as 
the maximum of the air-gap (1 mm). A simulation 
program based on the finite element method showed 
us that the disturbance forces created by the motor 
can not exceed 1 N. 

In opposition, the position transducer is a 
magnetic-type sensor (see fig. 2.a) and produces 
disturbing axial forces as we can see in figure 2.b. 

Considering that the air-gap is the same in the 
magnetic bearing and in the magnetic position 
sensor, the disturbing force due to the position 
sensor can be calculated with: 
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where Jt and hMPt – the magnetization and the 
thickness of the permanent magnet, Spt - the pole 
surface, δ1 – the minimum of the two air-gaps from 
the transducer magnetic circuit. 

We consider a power supply source characterized 
by the gain factor ks and a position sensor that have 
an one-order transfer function. Considering low  
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variations of the system variables a linear input-
state-output model is achieved [1]: 
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where Δδ is the air-gap variation, Δi is the coil 
feeding-current variation and Δe is the variation of 
the transducer output voltage. 
 

4. EXPERIMENTAL RESULTS 

4.1. Controller synthesis 
The experimental plant presented in figure 1 is 

characterised with the following parameters: 
- the mobile mass: m1=1.3Kg (whole system) 
- bearing coil resistance: RB=1.5 Ω 
- turn number of the coil: N=180 
- remanent magnetisation in bearing: J=0.5 T 
- remanent magnetis. in transducer: Jt=1.1 T 

- natural frequency ω0n=100 rad.sec-1 
- the air-gap sum: δ1+δ2=1.5 mm 
- the pos. sensor time constant: T1 = 0.002 s. 
- the initial current: i0 = 0.2 A 
In [1] a controller synthesis considering only the 

axial magnetic bearing is presented. In this paper we 
expand the previous controller for the whole 
flywheel system and analysed their characteristics 
through numeric simulations in Matlab environment.  

To insure the flywheel system stability we chose 
a polynomial-type control system that is presented in 
figure 3, where H(z) is the plant (the flywheel 
system including the two converters, numeric-
analogue CNA and analogue-numeric CAN) transfer 
function, HR(z) is the transfer function of the RST-
type controller with two degree-of-freedom and 
Hmr(z) is the transfer function of the model that 
defines the tracking-rating behaviour between the 

reference ref(z) and the plant output y(z) and p(z) is 
the external perturbation. 

Considering a sampling period Ts=0.005 sec, the 
plant discrete transfer-function yields: 
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In the polynom B(z) there can be separate a 

stabile part Bs(z) and an unstable part Bi(z), so that  
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Taking into account the structure presented in 

figure 3, the close-loop transfer function H0(z) can 
be expressed through 
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In the last relation, Amd(z) is a second-order 
polynom built with two dominant poles in order to 
have a desired dynamic behaviour. Considering a 
second-order element characterised by the natural 
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Figure 3. The closed-loop system structure. 
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Figure 2. The position sensor geometry and 
the produced disturbing force. 
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frequency  ωnd = 0.9ωn = 90 rad/sec and a damping 
factor ξd =0.8, its expression yields: 

487.0344.1)( 2 +−= zzzAmd   (9) 

The supplementary pole p1f = 0.6 having the 
order nf =2 was introduced to improve the dynamic 
performances of the close-loop system over the high 
frequency range. 

The transfer function Hmr(z) of the reference-
trajectory model correspond also to a second-order 
element, which considering the natural frequency ωn 
= 100 rad/sec and a damping factor ξd =0.8 results: 
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The controller synthesis consists in finding out 
the four polynoms R(z), S(z), T(z) and K0(z), which 
must satisfy a specific condition (that is called 
Bezout equation) presented in [2].  

The expressions we used for these four polynoms 
are [2]: 
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The above mentioned condition can be written in 
this particular case as follows: 
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This equation put in a matrix form is useful to 
determine the unknown values for r0, sα-1,…, s1, s0. 
For the system parameters and chosen form of the 
polynoms we found the following numeric 
expressions: 
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4.2. Simulation results 
 
The following figures present few simulation 

results, for the experimental plant–controller 
ensemble. For two values of the flotor mass, m1 and 
m2=3m1, and for two variants of the control structure 
(with and without reference-trajectory-model), the 

system behaviour is studied considering a step-jump 
of the reference variable. 

The variables having index 1 corresponds to the 
mass m1 and that having index 2 corresponds to the 
mass m2. A supplementary index *m refers to the 
case when the reference-trajectory-model is 
considered. The output voltages of the controller are 
showed in figures 4...7.  

First time, we can see that the presence of the 
reference-trajectory-model lead just to a low delay in 
the controller response, both for the m1 (figure 4) 
and m2 (figure 5) flotor masses.  

A comparison between the controller responses 
for the two masses is done in figure 6 (controller 
without reference-trajectory-model) and figure 7 
(controller with reference-trajectory-model).  

For the chosen cases, in the figures 8, 9 and 10 
the output voltages of the position transducer are 
presented. One notes that the system displaces with a 
low delay when the reference-trajectory-model is 
used and, more, this delay increases corresponding 
to the flotor mass. 

In the figures 11 is showed a magnitude-
frequency characteristic corresponding to the 
perturbation - output variable transfer function, 
which is called also perturbation-output variable 
sensitivity function. 

The obtained characteristics show a good 
stability and high dynamic performances for the 
synthesised numeric controller. 

 

5. CONCLUSIONS 
 
In the paper the influences of the elements 

composing a flywheel system over the magnetic 
bearing stability is analysed. In the proposed 
structure only the use of a magnetic-type position 
sensor lead to supplementary disturbance forces.  

A polynomial-type controller for the whole 
flywheel system is synthesised. One notice that the 
presence of the magnetic-type position sensor lead 
only to some small modifications in the controller 
structure. This is owed to the identical behaviour of 
the bearing active forces and the sensor disturbing 
forces. 

Considering variations of the constructive 
parameters and perturbation, by means of simulation 
programs the system behaviour analyses is 
performed. The simulation results show us that the 
synthesised controller assures, for the proposed 
flywheel system structure, a good stability and 
higher dynamic performances even for modifications 
in the control structure (with and without the 
reference-trajectory-model). 
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Figure 4. 

Figure 5. 

 

Figure 6. 

Figure 7. 

Figure 8. 

Figure 9. 

 

Figure 10. 

Figure 11. 
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