1979, Volume 52, Number 1, pag. K89-K91

Critical field anisotropy in inhomogeneous superconducting films

Sidorenko A. S., Minenko E. V., Fogel N. Ya., Shekhter R. I., Kulik I. O.

https://doi.org/10.1002/pssa.2210520162

Abstract

Transition metal superconducting films are characterized, unlike the films of simple superconductors, by a number of anomalies. Among them is the pronounced sensitivity of the critical parameters of the film to their structure. For example the critical temperature, T_c , deviates from T_c of the bulk metal at thicknesses $d \leq 10^3 \ \text{Å}$; the magnitude of the Josephson current is much smaller than theoretically predicted, etc..Critical magnetic field measurements reveal an additional maximum in the angular dependence at the angle $\Theta = \pi/2$ (corresponding to the direction perpendicular to the film surface) in parallel with the usual $\Theta = 0^0 \ \text{maximum}$ (magnetic field along the surface of the film) /1/. Fig. 1a shows the dependence $H_c(\Theta)$ for vanadium films having thickness $d = 1100 \ \text{Å}$, deposited onto a warm substrate. The direction of the vapour beam was perpendicular to the substrate. As the temperature decreases, the relative magnitude of the anomalous $(\Theta = \pi/2)$ maximum increases. Electron micrographs show polycrystalline structure of the film with the crystallites oriented normal to the substrate, the average grain size being 200 to 300 $\ \text{Å}$ (so-called columnar structure, see /1/).