
9th International Conference on Microelectronics and Computer Science, Chisinau, Republic of Moldova, October 19-21, 2017

 247

I. INTRODUCTION
The transportation network problem is a widespread

problem in the planning of product shipments, the location
of the production sites or standard problem in the design of
communication networks such as the electricity, gas and water
networks.

A transportation network is given by a series of points
and links between these points, but, as it often happens, we
do not always have a direct link between two points, which
means that we need to cross some intermediary points to
reach the destination. Beside the fact that the functions that
describe the transport costs are concave, there can also be
restrictions on the amount of flow that can be transported
from one point to another, so we can have restrictions of
the type “no less than” or “no more than”.

As a basis for solving various practical problems,
especially the economical ones, are the informational
technologies, which serve as a tool for obtaining the
optimum solutions. When the computations needed for
obtaining the optimum solution are complex and/or the
problem is very big, i.e. a big number of data and/or many
variables, we have to construct such a method that not only
finds the optimum solution, but also does it as fast as
possible.

This leads us to the idea of implementing parallel
programming when sequential programming doesn’t give the
desired result. At the same time, we must also take into
consideration that parallel computing has its limits in the
implementation. Jack Worlton (1986) studying the limits of
parallel computations assumed that a parallel program
consists of:

 processing sections distributed on different
processors;

 synchronizing sections;
 sections that are executed sequentially and constitute

an overhead.
Therefore, depending on the case, we can parallelize a

part of the algorithm but only rarely the whole algorithm.

II. PROBLEM FORMULATION AND TEOREICAL
BASIC CONCEPTS

Let us consider the transportation network [4, 5] described
by the graph 𝐺 = (𝑉, 𝐸), |𝑉| = 𝑛, |𝐸| = 𝑚. A real bounded
function of supply and demand 𝑞 = 𝑉 → 𝑅 is defined on the
finite set of its vertices 𝑉. Concave cost functions 𝜑𝑒(𝑥𝑒)
which depend on arcs flow are defined for each arc. We need
to determine such a flow 𝑥∗ that minimizes a non-linear
objective function

𝐹(𝑥) = ∑ 𝜑𝑒(𝑥𝑒)

𝑒∈𝐸

It is required to solve the non-linear optimization problem:

𝐹(𝑥∗) = min
𝑥∈𝑋

𝐹(𝑥)

where 𝑋 is a set of admissible flows on 𝐺 described by the
following system:

∑ 𝑥(𝑒)

𝑒∈𝐸+(𝑣)

− ∑ 𝑥(𝑒)

𝑒∈𝐸−(𝑣)

= 𝑞(𝑣)

with both non-negativity constraints and constraints on the
transportation capacities of arcs 𝑙(𝑒) ≤ 𝑥(𝑒) ≤ 𝑢(𝑒), for all
𝑒 ∈ 𝐸.

Definition: A transportation network 6 is an oriented
graph 𝐺 = (𝑉, 𝐸), without loops, which satisfies the
following properties:

1. There is a vertex (source) 𝑣0 ∈ 𝑉 which has only

outgoing edges;

2. There is a vertex (destination, sink) 𝑣𝑡 ∈ 𝑉 which

has only incoming edges;

3. For each arc it is associated a value 𝑐(𝑒), for any

𝑒 ∈ 𝐸, named capacity of the arc.

Definition: A flow in a network is a function 𝑓: 𝐸 → ℝ
which satisfies the following properties:

1. Capacity constraint: For all 𝑒 ∈ 𝐸 the condition
𝑓(𝑒) ≤ 𝑐(𝑒) is satisfied;

2. Skew symmetry: For all (𝑣1 , 𝑣2) ∈ 𝑉 the condition
𝑓(𝑣1, 𝑣2) = −𝑓(𝑣2, 𝑣1) is satisfied;

Applying sequential and parallel programming
to solve a non-linear transportation problem

Tatiana PAȘA, Valeriu UNGUREANU
State University of Moldova

pasa.tatiana@yahoo.com, v.a.ungureanu@gmail.com

Abstract — Some aspects related to the structure of a non-linear network transportation problem are
investigated. An improvement of an algorithm proposed earlier is provided by the means of sequential and
parallel programming and by using several initial admissible solutions. An analysis of different ways of the
algorithm implementation in the Wolfram Language is done. Obtained testing results on problems with
different dimensions and complexities are presented.

Index Terms — non-linear programming, transportation network, optimal solutions, admissible solutions,
local minimum, global minimum.

9th International Conference on Microelectronics and Computer Science, Chisinau, Republic of Moldova, October 19-21, 2017

 248

3. Flow conservation:
∑ 𝑥(𝑒)𝑥∈𝐸+(𝑣) − ∑ 𝑥(𝑒)𝑥∈𝐸−(𝑣) = 0 , where 𝐸+(𝑡) is
the set of edges that enter 𝑡 ∈ 𝑉 and 𝐸−(𝑠) - that
exit 𝑠 ∈ 𝑉.

Theorem: The transportation network problem with

concave function of cost φe for any e ∈ E is NP-complete.

So, we can say that the transportation network problem

with concave cost functions can be solved using finite
algorithms that study all non-cyclic subgraphs to which a
flow is associated and the size of the function is calculated.
In 3, the algorithm for solving the transportation network
problem is described for the case when the flow on the
network is bounded by an upper and lower value and the
cost functions, 𝜑𝑒(𝑥𝑒) for all 𝑒 ∈ 𝐸, are piecewise
concave functions because all concave functions can be
approximated with some error to a series of linear
functions. Based on the several tests performed on
networks of different sizes, it was concluded that the
algorithm doesn’t always give the optimum solution. This
is due to the fact that the obtained optimum solution
depends on the initial solution of the system with which the
algorithm begins its execution and which can be obtained
differently depending on the method used to solve the
system, that will depend on the size and complexity.

Theorem: There is a bijective correspondence between
the admissible basic solutions of a system of linear
equations and the vertices of a polyhedral set of admissible
solutions of this system. Each vertex of the polyhedral set
is a basic solution.

Based on the above results, the algorithm that solves the

transportation network problem with concave cost
functions should be modified to start from 𝑚 admissible
solutions and choose the best among the obtained optimum
solutions. In this case we will surely get the best optimum
solution, regardless of the structure complexity, the size of
the graph that describes the transportation network or the
concave cost functions.

Another aspect of the problem formulated above is the
notion of an optimum solution for non-linear problems
with concave cost functions that has to be minimized in the
constraints that have to be satisfied by such solution.

Definition: A function 𝑓 is concave on an interval, if for

all 𝑥 and 𝑦 from the interval and all 𝛼 ∈ [0,1] the
following is true: 𝑓((1 − 𝛼)𝑥 + 𝛼𝑦) ≥ (1 − 𝛼)𝑓(𝑥) +

𝛼𝑓(𝑦).

In this paper, concave functions are non-decreasing

piecewise functions, defined on the interval [𝟎, +∞]. They
describe the cost of shipping the product along an arc.

Definition: For a real function 𝑓: 𝐷 ∈ ℝ𝑚 ⟶ ℝ with 𝑚

real variables, a point 𝑦 = (𝑦1, 𝑦2 , … , 𝑦𝑚) ∈ 𝐷 ⊂ ℝ is
called a local minimum of the function if there exists a
neighborhood 𝑉 of the point 𝑦 such that 𝑓(𝑥1, 𝑥2, . . , 𝑥𝑚) ≥
𝑓(𝑦1, 𝑦2, . . , 𝑦𝑚), for all (𝑥1, 𝑥2, . . , 𝑥𝑚) ∈ 𝑉 ∩ 𝐷.

Definition: Let 𝑓: 𝐷 ∈ ℝ𝑚 ⟶ ℝ be a real function with
𝑚 real variables. A point 𝑦 = (𝑦1 , 𝑦2, … , 𝑦𝑚) ∈ 𝐷 ⊂ ℝ is
called global minimum of the function if
𝑓(𝑥1, 𝑥2, . . , 𝑥𝑚) ≥ 𝑓(𝑦1, 𝑦2, . . , 𝑦𝑚) holds for all
(𝑥1, 𝑥2, . . , 𝑥𝑚) ∈ 𝐷.

As it is known, for a problem of non-linear programming

often an optimum solution is obtained as a result of
determining a series of solutions and the user is the one that
puts restrictions when to stop this series and to consider an
approximate optimal solution as the final. Usually this
decision is made depending on the available time,
computer hardware or the complexity of computations.

Another aspect of the non-linear optimization problem is
that it can have many local minimums which is a barrier in
the successful solving of the problem, because most often
the algorithms give a local minimum that is not necessarily
close enough to the global minimum. A similar situation
was also observed in solving the problem formulated above
using the algorithm proposed in 1 and improved as
described in 2. In this paper, we aim to increase the
possibility of obtaining the global optimal solution.

Traditionally, we used software written for serial
computation because problem is broken into a discrete series
of instructions which are executed sequentially one after
another on a single processor.

Parallel programming means utilizing several computing
hardware for the simultaneous execution of the sequences
broken in discrete parts that can be solved concurrently. Each
sequence consists from a series of instructions and all
instructions from each part execute simultaneously on
different cores or processors all of which work through the
computation at the same time.

Parallel programming implies using computing resources
this way:

- a single computer with multiple processors or cores;

- an arbitrary number of such computers connected by a

network;

- a combination between a computer with multiple

processors or cores and an arbitrary number of such

computers connected by a network.

We can highlight two important advantages of parallel

programming over sequential programming:

- enables solving complex and/or big problems that

cannot be solved using a single computer;

- by executing the instructions in parallel we save time

and money.

We may highlight that the primary objective of parallel

computing is to increase the available computation power

for faster application processing. The application server

sends a computation or processing request that is distributed

in small components, which are executed on each processor

or core.

According to Flynn’s taxonomy of computer

architectures [8], computation systems can be classified

based on the flow of executed instructions and the flow of

data to be processed. Each of these characteristics can have

a unique or multiple state. This way we can define the

following classes:

- SISD (Single Instruction, Single Data) – a single

processing unit, at each step executes a single

instruction (sequence of instructions) that operates with

9th International Conference on Microelectronics and Computer Science, Chisinau, Republic of Moldova, October 19-21, 2017

 249

a single input data. This model involves the application

of sequential algorithms.

- SIMD (Single Instruction, Multiple Data) – a single

control unit that manages N identical processors with

their own memory that, at each step, executes the same

instruction using multiple input data. For the

communication between the processors Shared

Memory or Interconnection Network will be used.

- MISD (Multiple Instruction, Single Data) – is a model

in which there are N processors with their own control

unit and shared memory. At each step the processors

execute different instruction using the same input data.

- MIMD (Multiple Instruction, Multiple Data) – this

model uses N processors that operate with N input data

and N instructions. So, at each step each processor

solves different problems with different input data. The

communication between processors is made using

Shared Memory.

The best system to use in the context of the formulated

problem is SISD or SIMD depending on the dimensions of the

network and the necessary time to obtain the optimum

solution.

III. THE IMPROVED ALGORITHM, ANALISYS AND
RESULTS

We can improve the algorithm by repeating the steps to
determine the optimal solution for a few initial solutions
and then to select the best one, which will be the optimal
solution. We will also examine the possibility of the
minimum attaining for several initial/starting points.

We will now explain the possibility of improving the
algorithm in 3 using sequential programming and parallel
programming. In both cases the initialization of data, i.e.
obtaining the set of initial solutions, will be done the same
way, therefore there will be no restrictions on the method
used or the type of programming used in the
implementation.

3.1 Sequential programming
As mentioned above, the computation system SISD is

applied in the implementation of sequential algorithms
because it satisfies the condition that a singe processing
unit executes a singe sequence of instructions which in our
case will be the sequence of determining the optimum
solution. On the other hand, this model operates with a single

data, which in our case will be the initial solution from which

will start the algorithm to compute the optimum solution.

Below we describe the algorithm, that will be implemented

using sequential programming.

I. Initialization of the data
Step 1.
Construct a table containing 𝑘 admissible solutions of

the system:

{
∑ 𝑥(𝑒)

𝑒∈𝐸+(𝑣)

− ∑ 𝑥(𝑒)

𝑒∈𝐸−(𝑣)

= 𝑞(𝑣), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉

𝑥(𝑒) ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉

which will be the initial solutions for obtaining the table
of optimal solutions.

II. For every element of the table we obtain an optimal
solution:

Step 2.
Determine the value of the function in the point:

𝐹(𝑥0) = ∑ 𝜑𝑒(𝑥0(𝑒))

𝑒∈𝐸

and compute the value of the coefficients:

𝐶𝑒 = {

𝜑𝑒(𝑥0(𝑒))

𝑥0(𝑒)
, 𝑥0(𝑒) > 0

𝐹𝑒
′(0), 𝑥0(𝑒) = 0

for every 𝑒 ∈ 𝐸.
Step 3.
Solve the linear transport problem:

𝑚𝑖𝑛 → 𝑧(𝑥) = ∑ 𝐶𝑒𝑥(𝑒)

𝑒∈𝐸

{
∑ 𝑥(𝑒)

𝑒∈𝐸+(𝑣)

− ∑ 𝑥(𝑒)

𝑒∈𝐸−(𝑣)

= 𝑞(𝑣), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉

𝑥(𝑒) ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉

and obtain the optimum solution
𝑥1 = (𝑥1(𝑒1), 𝑥1(𝑒2), … , 𝑥1(𝑒𝑚)).

Step 4.
Compare the values 𝑧(𝑥1) and 𝐹(𝑥0). If 𝑧(𝑥1) < 𝐹(𝑥0)

or 𝑧(𝑥1) = 𝐹(𝑥0) and 𝑥1 ≠ 𝑥0 substitute 𝑥0 with 𝑥1 and
go to Step 2. If 𝑧(𝑥1) > 𝐹(𝑥0) or 𝑧(𝑥1) = 𝐹(𝑥0) and
𝑥1 = 𝑥0 then the optimal solution of the non-linear
transport problem is considered the value 𝑥∗ = 𝑥0, the
value 𝐹(𝑥0) and 𝑥∗ = 𝑥0 that correspond to it is preserved;
go to the next initial solution.

III. Obtain the optimum solution of the problem
Step 5.
Compare the objective function’s values obtained for

different initial points and determine the minimal value;
save it as the optimal solution and eliminate duplicates.
STOP.

Wolfram Language [7] makes it easy to implement the

algorithm. The code is compact, easy-to-read, it is easy to
define new variables and functions.

To obtain an initial solution with which the program will
start according to the algorithm, we use the FindInstace[]
standard function which solves the system of equations. It
provides the non-negative solutions and as a result we
obtain one of the set of possible solutions on the basis of
which a linear function is obtained. LinearPrograming[] is
a standard function that solves the problem of linear
programming.

All considered problems were solved by generating 100
initial admissible solutions and the optimal solution was
selected from the values obtained based on these initial
solutions. A comparison between the obtained solutions
and the execution time of the algorithm in each case was
made as we can see in Table 1.

TABLE I. EXECUTION TIME
Nr. of
arcs
(m)

For m initial
solutions

For 100 initial
solutions

Minimize

6 0.0781 0.6718 0.1280

9th International Conference on Microelectronics and Computer Science, Chisinau, Republic of Moldova, October 19-21, 2017

 250

7 0.9375 0.8282 0.2332
8 0.2187 1.9055 0.5189
9 0.4531 3.7220 1.1229
10 1.1562 9.9054 2,7257
11 1.9375 15.1700 17.0920
12 4.4531 4.4531 32.3139
13 10.0625 68.0372 72.2206
14 16.4063 99.1259 68.9724
15 40.6250 236.5117 81.7750
16 56.1250 313.3157 345.6110
17 140.9530 727.777 308.3290
18 333.2340 1599.7834 1827.4400

3.2 Parallel programming
 As we can see, the same sequence of instructions is

executed for every initial solution obtained in step 1. In this
context we can assume that we have the right use the
computing system SIMD that utilizes a single control unit

that manages N processors such that each executes the

sequence of instructions described in steps 2-4 of the

algorithm. At the same time, as input data will serve a

different initial solution. The exchange of data between the
processors will be accomplished using a common memory
where the results will be stored, which will be used later to
complete step 5.

Even if we will apply parallel programming to improve
the execution time of the algorithm, there exists a limit to
the growth of the execution speed of the implemented
system. In 1967, Gene Amdahl introduced the law
regarding the execution rate and proposed a formula for the
speed limit for parallel structures in relation to sequential
structures.

The Wolfram Language [7] provides a uniquely
integrated and automated environment for parallel
computing. With zero configuration, full interactivity, and
seamless local and network operation, the symbolic
character of the Wolfram Language allows immediate
support of a variety of existing and new parallel
programming paradigms and data-sharing models. As with
sequential programming, Wolfram Language can be
applied to implement parallel programming. Among the
standard functions can be named $KernelCount that returns
the number of active kernels for parallel programming. For
the synchronization of the kernels WaitAll[{pid1, pid2, …,
pidn}] is used. Parallelize[expr] evaluates expr using
automatic parallelization. ParallelEvaluate[expr] evaluates
the expression expr on all available parallel kernels and
returns the list of results obtained. The same function
receive as input data on which kernels to execute the
expression, in this case the function has the following
template ParallelEvaluate[expr, {ker1, ker2,… }] or we can
specify on which kernel the expression will be evaluated
using the following template ParallelEvaluate[expr,
kernel]. ParallelSubmit[expr] submits expr for evaluation
on the next available parallel kernel and returns an
expression representing the submitted evaluation.

Applying standard functions allows us to improve the
execution time of the algorithm, but this will be better
visible for solving problems of big dimensions. As
mentioned in [3], the standard function used to obtain the
optimum solution (sequentially) give a good result, but for

problems with more than 18 arcs the execution time
exceeds an hour.

IV. CONCLUSION
From the analysis of the results of the algorithm testing

based on a series of problems of different dimensions, we
can formulate the following conclusions:

1. The algorithm gives solutions as good as Minimize[]
and better than NMinimize[], as it gives an optimum
solution only in 25% of cases;

2. The execution time increases with the number of
initial solutions from which the algorithm starts, but
also with the increase of the graph that describes the
network;

3. The algorithm offers more solutions for obtained
optimum, which in real life gives the possibility to
choose the correct strategy in decision making;

4. To manage the execution time of the algorithm, we
must carefully choose the number of initial solutions
to be built. From the observed from the tests, the
number of initial solutions must be at least equal to
𝑚, i.e. the number of variables the solution vector
has. This will surely give a better final solution than
using only one initial solution;

5. Using parallel programming improves the execution
time;

6. The execution time using parallel programming
doesn’t improve proportionally with the number of
processors used, because there are computations that
cannot be parallelized and must be executed
sequentially.

In the most cases, the number of optimal solutions
remains approximately the same even the number of initial
solutions with which the algorithm operates is increased.

REFERENCES
[1] Pasha T., Lozovanu D., An algorithm for solving the

transport problem on network with concave cost
functions on flow of edges. Computer Science Journal
of Moldova, vol. 10, no 3, Kishinev (2002), pp. 341-
347.

[2] Pașa T., Ungureanu V., Solving the transportation
problem with piecewise-linear concave cost function
on edge flows, A 20-a Conferință a SPSR, AFA “Henri
Coandă”, Departamentul de Științe Fundamentale și
Management, Brașov, România, 28-29 aprilie 2017,
Editura ASF, p.37

[3] Pașa T., Ungureanu V., Wolfram Mathematica as an
enviroment for solving concave network transportation
problems. Proceeding CMSM4, The Fourth
Conference of Mathematical Society of the Republic
of Moldova dedicated to the centenary of Vladimir
Andrunachevici (1917 - 1997), 28 iunie – 2 iulie 2017,
Institute of Mathematics and Computer Science,
Academy of Scieces of Moldova, Chișinău (2017), p.
429 – 432.

[4] Гольштейн Е. Г., Юдин Д. Б. Задачи линейного
программирования транспортного типа. М.:
Наука, 1969.

[5] Ермольев Ю. М., Мельник И. И. Эктремальные
задачи на графах. Киев: Наукова думка, 1968.

9th International Conference on Microelectronics and Computer Science, Chisinau, Republic of Moldova, October 19-21, 2017

 251

[6] R. Trandafir, Modele și algoritmi de optimizare,
AGIR, București, 2004.

[7] S. Wolfram, An elementary introduction to the
Wolfram Language. Friesens, Manitoba, Canada, 1-st
edition, 2016.

[8] Flynn, M.J. Some computer organizations ant their
effectiveness, IEEE Transactions on Computers, C-21
(9), 1972, pp. 948-960.

