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I. INTRODUCTION 
The transportation network problem is a widespread 

problem in the planning of product shipments, the location 
of the production sites or standard problem in the design of 
communication networks such as the electricity, gas and water 
networks. 

A transportation network is given by a series of points 
and links between these points, but, as it often happens, we 
do not always have a direct link between two points, which 
means that we need to cross some intermediary points to 
reach the destination. Beside the fact that the functions that 
describe the transport costs are concave, there can also be 
restrictions on the amount of flow that can be transported 
from one point to another, so we can have restrictions of 
the type “no less than” or “no more than”. 

As a basis for solving various practical problems, 
especially the economical ones, are the informational 
technologies, which serve as a tool for obtaining the 
optimum solutions. When the computations needed for 
obtaining the optimum solution are complex and/or the 
problem is very big, i.e. a big number of data and/or many 
variables, we have to construct such a method that not only 
finds the optimum solution, but also does it as fast as 
possible. 

This leads us to the idea of implementing parallel 
programming when sequential programming doesn’t give the 
desired result. At the same time, we must also take into 
consideration that parallel computing has its limits in the 
implementation. Jack Worlton (1986) studying the limits of 
parallel computations assumed that a parallel program 
consists of:  

 processing sections distributed on different 
processors;  

 synchronizing sections;  
 sections that are executed sequentially and constitute 

an overhead. 
Therefore, depending on the case, we can parallelize a 

part of the algorithm but only rarely the whole algorithm. 
 

II. PROBLEM FORMULATION AND TEOREICAL 
BASIC CONCEPTS 

Let us consider the transportation network [4, 5] described 
by the graph 𝐺 = (𝑉, 𝐸), |𝑉| = 𝑛, |𝐸| = 𝑚. A real bounded 
function of supply and demand 𝑞 = 𝑉 → 𝑅 is defined on the 
finite set of its vertices 𝑉. Concave cost functions 𝜑𝑒(𝑥𝑒) 
which depend on arcs flow are defined for each arc. We need 
to determine such a flow 𝑥∗ that minimizes a non-linear 
objective function 

𝐹(𝑥) = ∑ 𝜑𝑒(𝑥𝑒)

𝑒∈𝐸

 

It is required to solve the non-linear optimization problem:  

𝐹(𝑥∗) = min
𝑥∈𝑋

𝐹(𝑥) 

where 𝑋 is a set of admissible flows on 𝐺 described by the 
following system: 

∑ 𝑥(𝑒)

𝑒∈𝐸+(𝑣)

− ∑ 𝑥(𝑒)

𝑒∈𝐸−(𝑣)

= 𝑞(𝑣) 

with both non-negativity constraints and constraints on the 
transportation capacities of arcs 𝑙(𝑒) ≤ 𝑥(𝑒) ≤ 𝑢(𝑒), for all 
𝑒 ∈ 𝐸.  
 

Definition: A transportation network 6 is an oriented 
graph 𝐺 = (𝑉, 𝐸), without loops, which satisfies the 
following properties:  

1. There is a vertex (source) 𝑣0 ∈ 𝑉 which has only 

outgoing edges;  

2. There is a vertex (destination, sink) 𝑣𝑡 ∈ 𝑉 which 

has only incoming edges;  

3. For each arc it is associated a value 𝑐(𝑒), for any 

𝑒 ∈ 𝐸, named capacity of the arc.  
 

Definition: A flow in a network is a function 𝑓: 𝐸 → ℝ 
which satisfies the following properties:  

1. Capacity constraint: For all 𝑒 ∈ 𝐸 the condition 
𝑓(𝑒) ≤ 𝑐(𝑒) is satisfied;  

2. Skew symmetry: For all (𝑣1 , 𝑣2) ∈ 𝑉 the condition 
𝑓(𝑣1, 𝑣2) = −𝑓(𝑣2, 𝑣1) is satisfied;  
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3. Flow conservation: 
∑ 𝑥(𝑒)𝑥∈𝐸+(𝑣) − ∑ 𝑥(𝑒)𝑥∈𝐸−(𝑣) = 0 , where 𝐸+(𝑡) is 
the set of edges that enter 𝑡 ∈ 𝑉  and 𝐸−(𝑠) - that 
exit 𝑠 ∈ 𝑉.  

 
Theorem: The transportation network problem with 

concave function of cost φe for any e ∈ E is NP-complete.  
 
So, we can say that the transportation network problem 

with concave cost functions can be solved using finite 
algorithms that study all non-cyclic subgraphs to which a 
flow is associated and the size of the function is calculated.  
In 3, the algorithm for solving the transportation network 
problem is described for the case when the flow on the 
network is bounded by an upper and lower value and the 
cost functions,  𝜑𝑒(𝑥𝑒) for all 𝑒 ∈ 𝐸, are piecewise 
concave functions because all concave functions can be 
approximated with some error to a series of linear 
functions. Based on the several tests performed on 
networks of different sizes, it was concluded that the 
algorithm doesn’t always give the optimum solution. This 
is due to the fact that the obtained optimum solution 
depends on the initial solution of the system with which the 
algorithm begins its execution and which can be obtained 
differently depending on the method used to solve the 
system, that will depend on the size and complexity. 
 

Theorem: There is a bijective correspondence between 
the admissible basic solutions of a system of linear 
equations and the vertices of a polyhedral set of admissible 
solutions of this system. Each vertex of the polyhedral set 
is a basic solution.  

 
Based on the above results, the algorithm that solves the 

transportation network problem with concave cost 
functions should be modified to start from 𝑚 admissible 
solutions and choose the best among the obtained optimum 
solutions. In this case we will surely get the best optimum 
solution, regardless of the structure complexity, the size of 
the graph that describes the transportation network or the 
concave cost functions.  

Another aspect of the problem formulated above is the 
notion of an optimum solution for non-linear problems 
with concave cost functions that has to be minimized in the 
constraints that have to be satisfied by such solution.  

 
Definition: A function 𝑓 is concave on an interval, if for 

all 𝑥 and 𝑦 from the interval and all 𝛼 ∈ [0,1] the 
following is true:  𝑓((1 − 𝛼)𝑥 + 𝛼𝑦) ≥ (1 − 𝛼)𝑓(𝑥) +

𝛼𝑓(𝑦).  
 
In this paper, concave functions are non-decreasing 

piecewise functions, defined on the interval [𝟎, +∞]. They 
describe the cost of shipping the product along an arc.  

 
Definition: For a real function 𝑓: 𝐷 ∈ ℝ𝑚 ⟶ ℝ with 𝑚 

real variables, a point 𝑦 = (𝑦1, 𝑦2 , … , 𝑦𝑚) ∈ 𝐷 ⊂ ℝ is 
called a local minimum of the function if there exists a 
neighborhood 𝑉 of the point 𝑦 such that 𝑓(𝑥1, 𝑥2, . . , 𝑥𝑚) ≥
𝑓(𝑦1, 𝑦2, . . , 𝑦𝑚), for all (𝑥1, 𝑥2, . . , 𝑥𝑚) ∈ 𝑉 ∩ 𝐷.  

 

Definition: Let 𝑓: 𝐷 ∈ ℝ𝑚 ⟶ ℝ be a real function with 
𝑚 real variables. A point 𝑦 = (𝑦1 , 𝑦2, … , 𝑦𝑚) ∈ 𝐷 ⊂ ℝ is 
called global minimum of the function if 
𝑓(𝑥1, 𝑥2, . . , 𝑥𝑚) ≥ 𝑓(𝑦1, 𝑦2, . . , 𝑦𝑚) holds for all 
(𝑥1, 𝑥2, . . , 𝑥𝑚) ∈ 𝐷.  

 
As it is known, for a problem of non-linear programming 

often an optimum solution is obtained as a result of 
determining a series of solutions and the user is the one that 
puts restrictions when to stop this series and to consider an 
approximate optimal solution as the final. Usually this 
decision is made depending on the available time, 
computer hardware or the complexity of computations.  

Another aspect of the non-linear optimization problem is 
that it can have many local minimums which is a barrier in 
the successful solving of the problem, because most often 
the algorithms give a local minimum that is not necessarily 
close enough to the global minimum. A similar situation 
was also observed in solving the problem formulated above 
using the algorithm proposed in 1 and improved as 
described in 2. In this paper, we aim to increase the 
possibility of obtaining the global optimal solution.  

Traditionally, we used software written for serial 
computation because problem is broken into a discrete series 
of instructions which are executed sequentially one after 
another on a single processor. 

Parallel programming means utilizing several computing 
hardware for the simultaneous execution of the sequences 
broken in discrete parts that can be solved concurrently. Each 
sequence consists from a series of instructions and all 
instructions from each part execute simultaneously on 
different cores or processors all of which work through the 
computation at the same time. 

Parallel programming implies using computing resources 
this way: 

- a single computer with multiple processors or cores; 

- an arbitrary number of such computers connected by a 

network; 

- a combination between a computer with multiple 

processors or cores and an arbitrary number of such 

computers connected by a network. 

We can highlight two important advantages of parallel 

programming over sequential programming: 

- enables solving complex and/or big problems that 

cannot be solved using a single computer; 

- by executing the instructions in parallel we save time 

and money. 

We may highlight that the primary objective of parallel 

computing is to increase the available computation power 

for faster application processing. The application server 

sends a computation or processing request that is distributed 

in small components, which are executed on each processor 

or core. 

According to Flynn’s taxonomy of computer 

architectures [8], computation systems can be classified 

based on the flow of executed instructions and the flow of 

data to be processed. Each of these characteristics can have 

a unique or multiple state. This way we can define the 

following classes: 

- SISD (Single Instruction, Single Data) – a single 

processing unit, at each step executes a single 

instruction (sequence of instructions) that operates with 
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a single input data. This model involves the application 

of sequential algorithms. 

- SIMD (Single Instruction, Multiple Data) – a single 

control unit that manages N identical processors with 

their own memory that, at each step, executes the same 

instruction using multiple input data. For the 

communication between the processors Shared 

Memory or Interconnection Network will be used. 

- MISD (Multiple Instruction, Single Data) – is a model 

in which there are N processors with their own control 

unit and shared memory.  At each step the processors 

execute different instruction using the same input data. 

- MIMD (Multiple Instruction, Multiple Data) – this 

model uses N processors that operate with N input data 

and N instructions. So, at each step each processor 

solves different problems with different input data. The 

communication between processors is made using 

Shared Memory.  

The best system to use in the context of the formulated 

problem is SISD or SIMD depending on the dimensions of the 

network and the necessary time to obtain the optimum 

solution. 

 

III. THE IMPROVED ALGORITHM, ANALISYS AND 
RESULTS 

We can improve the algorithm by repeating the steps to 
determine the optimal solution for a few initial solutions 
and then to select the best one, which will be the optimal 
solution. We will also examine the possibility of the 
minimum attaining for several initial/starting points. 

We will now explain the possibility of improving the 
algorithm in 3 using sequential programming and parallel 
programming. In both cases the initialization of data, i.e. 
obtaining the set of initial solutions, will be done the same 
way, therefore there will be no restrictions on the method 
used or the type of programming used in the 
implementation. 

 
3.1 Sequential programming 
As mentioned above, the computation system SISD is 

applied in the implementation of sequential algorithms 
because it satisfies the condition that a singe processing 
unit executes a singe sequence of instructions which in our 
case will be the sequence of determining the optimum 
solution. On the other hand, this model operates with a single 

data, which in our case will be the initial solution from which 

will start the algorithm to compute the optimum solution.  

Below we describe the algorithm, that will be implemented 

using sequential programming. 

 
I. Initialization of the data 
Step 1. 
Construct a table containing 𝑘 admissible solutions of 

the system: 

{
∑ 𝑥(𝑒)

𝑒∈𝐸+(𝑣)

− ∑ 𝑥(𝑒)

𝑒∈𝐸−(𝑣)

= 𝑞(𝑣), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉

𝑥(𝑒) ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉

 

which will be the initial solutions for obtaining the table 
of optimal solutions.  

 

II. For every element of the table we obtain an optimal 
solution: 

Step 2. 
Determine the value of the function in the point: 

𝐹(𝑥0) = ∑ 𝜑𝑒(𝑥0(𝑒))

𝑒∈𝐸

 

and compute the value of the coefficients: 

𝐶𝑒 = {

𝜑𝑒(𝑥0(𝑒))

𝑥0(𝑒)
, 𝑥0(𝑒) > 0

𝐹𝑒
′(0), 𝑥0(𝑒) = 0

 

for every 𝑒 ∈ 𝐸.  
Step 3. 
Solve the linear transport problem: 

𝑚𝑖𝑛 → 𝑧(𝑥) = ∑ 𝐶𝑒𝑥(𝑒)

𝑒∈𝐸

 

{
∑ 𝑥(𝑒)

𝑒∈𝐸+(𝑣)

− ∑ 𝑥(𝑒)

𝑒∈𝐸−(𝑣)

= 𝑞(𝑣), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉

𝑥(𝑒) ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉

 

and obtain the optimum solution 
𝑥1 = (𝑥1(𝑒1), 𝑥1(𝑒2), … , 𝑥1(𝑒𝑚)).  

Step 4. 
Compare the values 𝑧(𝑥1) and 𝐹(𝑥0). If 𝑧(𝑥1) < 𝐹(𝑥0) 

or 𝑧(𝑥1) = 𝐹(𝑥0) and 𝑥1 ≠ 𝑥0 substitute 𝑥0 with 𝑥1 and 
go to Step 2. If 𝑧(𝑥1) > 𝐹(𝑥0) or 𝑧(𝑥1) = 𝐹(𝑥0) and 
𝑥1 = 𝑥0 then the optimal solution of the non-linear 
transport problem is considered the value 𝑥∗ = 𝑥0, the 
value 𝐹(𝑥0) and 𝑥∗ = 𝑥0 that correspond to it is preserved; 
go to the next initial solution. 

 
III. Obtain the optimum solution of the problem 
Step 5. 
Compare the objective function’s values obtained for 

different initial points and determine the minimal value; 
save it as the optimal solution and eliminate duplicates. 
STOP.  

 
Wolfram Language [7] makes it easy to implement the 

algorithm. The code is compact, easy-to-read, it is easy to 
define new variables and functions.  

To obtain an initial solution with which the program will 
start according to the algorithm, we use the FindInstace[] 
standard function which solves the system of equations. It 
provides the non-negative solutions and as a result we 
obtain one of the set of possible solutions on the basis of 
which a linear function is obtained. LinearPrograming[] is 
a standard function that solves the problem of linear 
programming. 

All considered problems were solved by generating 100 
initial admissible solutions and the optimal solution was 
selected from the values obtained based on these initial 
solutions. A comparison between the obtained solutions 
and the execution time of the algorithm in each case was 
made as we can see in Table 1. 
 

TABLE I. EXECUTION TIME 
Nr. of 
arcs 
(m) 

For m initial 
solutions 

For 100 initial 
solutions 

 
Minimize 

6 0.0781 0.6718 0.1280 
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7 0.9375 0.8282 0.2332 
8 0.2187 1.9055 0.5189 
9 0.4531 3.7220 1.1229 
10 1.1562 9.9054 2,7257 
11 1.9375 15.1700 17.0920 
12 4.4531 4.4531 32.3139 
13 10.0625 68.0372 72.2206 
14 16.4063 99.1259 68.9724 
15 40.6250 236.5117 81.7750 
16 56.1250 313.3157 345.6110 
17 140.9530 727.777 308.3290 
18 333.2340 1599.7834 1827.4400 

 
3.2 Parallel programming 
 As we can see, the same sequence of instructions is 

executed for every initial solution obtained in step 1. In this 
context we can assume that we have the right use the 
computing system SIMD that utilizes a single control unit 

that manages N processors such that each executes the 

sequence of instructions described in steps 2-4 of the 

algorithm. At the same time, as input data will serve a 

different initial solution. The exchange of data between the 
processors will be accomplished using a common memory 
where the results will be stored, which will be used later to 
complete step 5. 

Even if we will apply parallel programming to improve 
the execution time of the algorithm, there exists a limit to 
the growth of the execution speed of the implemented 
system. In 1967, Gene Amdahl introduced the law 
regarding the execution rate and proposed a formula for the 
speed limit for parallel structures in relation to sequential 
structures. 

The Wolfram Language [7] provides a uniquely 
integrated and automated environment for parallel 
computing. With zero configuration, full interactivity, and 
seamless local and network operation, the symbolic 
character of the Wolfram Language allows immediate 
support of a variety of existing and new parallel 
programming paradigms and data-sharing models. As with 
sequential programming, Wolfram Language can be 
applied to implement parallel programming. Among the 
standard functions can be named $KernelCount that returns 
the number of active kernels for parallel programming. For 
the synchronization of the kernels WaitAll[{pid1, pid2, …, 
pidn}] is used. Parallelize[expr] evaluates expr using 
automatic parallelization. ParallelEvaluate[expr] evaluates 
the expression expr on all available parallel kernels and 
returns the list of results obtained. The same function 
receive as input data on which kernels to execute the 
expression, in this case the function has the following 
template ParallelEvaluate[expr, {ker1, ker2,… }] or we can 
specify on which kernel the expression will be evaluated 
using the following template ParallelEvaluate[expr, 
kernel]. ParallelSubmit[expr] submits expr for evaluation 
on the next available parallel kernel and returns an 
expression representing the submitted evaluation. 

Applying standard functions allows us to improve the 
execution time of the algorithm, but this will be better 
visible for solving problems of big dimensions. As 
mentioned in [3], the standard function used to obtain the 
optimum solution (sequentially) give a good result, but for 

problems with more than 18 arcs the execution time 
exceeds an hour. 

IV. CONCLUSION 
From the analysis of the results of the algorithm testing 

based on a series of problems of different dimensions, we 
can formulate the following conclusions: 

1. The algorithm gives solutions as good as Minimize[] 
and better than NMinimize[], as it gives an optimum 
solution only in 25% of cases; 

2. The execution time increases with the number of 
initial solutions from which the algorithm starts, but 
also with the increase of the graph that describes the 
network; 

3. The algorithm offers more solutions for obtained 
optimum, which in real life gives the possibility to 
choose the correct strategy in decision making; 

4. To manage the execution time of the algorithm, we 
must carefully choose the number of initial solutions 
to be built. From the observed from the tests, the 
number of initial solutions must be at least equal to 
𝑚, i.e. the number of variables the solution vector 
has. This will surely give a better final solution than 
using only one initial solution; 

5. Using parallel programming improves the execution 
time; 

6. The execution time using parallel programming 
doesn’t improve proportionally with the number of 
processors used, because there are computations that 
cannot be parallelized and must be executed 
sequentially.  

In the most cases, the number of optimal solutions 
remains approximately the same even the number of initial 
solutions with which the algorithm operates is increased. 
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