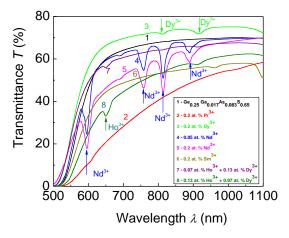
Absorption and Luminescence Spectra of Ga-based Chalcogenide Glasses


E.V. Lupan, M.S. Iovu

Insstitute of Applied Physics, ASM, Str. Academiei 5, MD-28 Chisinau, R. Moldova

E-mail: mihail.iovu@phus.asm.md

Excellent optical properties of chalcogenide glasses make them interesting for optoelectronic devices in the visible (VIS) and, especially, in the near (NIR)- and mid-infrared (MIR) spectral regions. Special interest represents Ga-based chalcogenide glasses, such as Ga-Ge-As-S doped re-earth ions due to their potential applications as optical amplifiers for the 1.3 and 1.5 μ m telecommunication windows and for fiber lasers.. In this paper we report the experimental results on absorption and emission spectra of $Ga_{1.7}Ge_{25}As_{8.3}S_{65}$ doped with Sm^{3+} , Nd^{3+} , Pr^{3+} , Dy^{3+} and co-doped with $Sm^{3+}+Dy^{3+}$ rare-earth ions. Ge-Ga-As-S glassy systems are a good host materials for the rare-earth ions, have a large glass forming regions, high transmission in the visible and mid-IR regions of the spectrum, high refractive index (n=2.4÷2.5 at λ =0.63 μ m). It was demonstrated that introduction of Ga in Ge-As-S play a decisive role preventing the glass against devitrification.

Fig. 1 reporesents room-temperature transmission spectra of the base glass $Ga_{17}Ge_{25}As_{8.3}S_{65}$, and doped with different rare-earth species. Doping with Dy^{3+} ions shift the absorption edge in the high energy region, when doping with Nd^{3+} and Ho^{3+} ions shift the absorption edge in the low energy region. On the transmission spectra are clearly distinctly the absorbtion bands which appear as a result of the electron transitions on the levels of rare-earth ions.

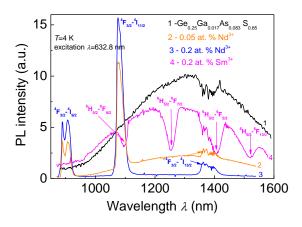


Fig.1. The transmission spectra of the $Ga_{17}Ge_{25}As_{8.3}S_{65}$ base glass and doped with different rare-earth species.

Fig.2. Low-temperature emission spectra $Ga_{17}Ge_{25}As_{8.3}S_{65}$ base glass and doped with Nd^{3+} and Sm^{3+} .

Fluorescence emission for the $Ga_{17}Ge_{25}As_{8.3}S_{65}$ base glass at around 1300 nm at T=4 K was observed (Fig.2) when pumping with λ =632.8 nm. A strong luminescence of Nd³⁺ and Sm³⁺ ions was observed around 1100 nm. For the glasses co-doped with: 0.07 at% Ho³⁺ + 0.13 at% Dy³⁺, and co-doped with: 0.13 at% Ho³⁺ + 0.07 at% Dy³⁺, two strong emission bands were observed: the first at λ ~1190 nm was due to the ${}^5I_6 \rightarrow {}^5I_8$ down-transition of the Ho³⁺ ion and the second at λ ~1330 nm was due to the ${}^6H_{9/2} \rightarrow {}^6H_{15/2}$ down-transition of the Dy³⁺ ion. Low temperature (T=10 K) PL spectra of $Ga_{17}Ge_{25}As_{8.3}S_{65}$ that co-doped with 0.07 Ho³⁺+0.13 Dy³⁺ (1) and 0.13 Ho³⁺+0.07Dy³⁺ (2) in the visible region with the excitation wavelength λ =488 nm are shown in Fig.4. The measured low-temperature PL spectra showing the pronounced bands which are related to 4f-4f transitions, and can be understood in terms of the non-radiative energy transfer mediated by deep energy states in resonance with the 4f levels of RE³⁺ ions.

The work was supported by the project # 15.817.02.03A of the SCSDT.