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High level of synthesis parallel problem-oriented
TS — coordinated digital computing systems

V. Kondrat’ev Y. Bazhanov A. Balabanov

Abstract

Exemple abstact. C’est une place pour remplacer notre ab-
stract

1 Introduction

The development of parallel digital computing systems (DCS) is a main
direction in development of architecture of the computers which suc-
ceets the on change of traditional principles of machines designing of
consecutive action machines based on a model offered by von Neumann.

Creation of DCS with parallel structures now moves along the direc-
tion of design both universal DCS used for solution of a broad circle of
tasks, and problem-oriented DCS, intended for more effective solution
of the narrow class of tasks or even one specific task.

Parallel universal DCS allow to use only universal kind of paral-
lelism. Parallel problem-oriented DCS, unlike universal one, in prin-
ciple allow to establish full coordination between potential parallelism
contained in the task and its realization in the real computing environ-
ment.

Therefore in process of designing of such systems there is rather
actual task of structural-temporal coordination (we shall name such
coordination the TS-coordination) of all subsystems to supply balance
of separate parts of DCS, at which each part has sufficient complexity
and speed (neither more then this) to perform the job laid on DCS
with minimum apparatus expenditure in the time that does not exceed
the beforehand determined valne.
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In [1,2] for TS-concordance of operational elements and devices the
approach in offered, based on optimization of the network graphs with
the help of effective Ford-Fulkerson-Kelley (FFC) algorithm. In the
present article this approach is spreaded to the more complex class of
systems,hamely parallel problem-oriented DCS. This approach allows
to execute synthesis implemeiting the DCS beginning from the usual
sequential flowchart of algorithm (GSA) and finishing with an parallel
TS- coordinated structure of given GSA. GSA determines some map-
ping of inputs onto outputs and by virtue of this it is the abstract
behavioral specification of DCS, that allows to consider the offered ap-
proach as a method of high level synthesis of parallel problem — oriented
DCS [3].

2 Objects of TS — coordination

Let’s consider the generalized block diagram of parallel problem-
oriented DCS, represented at fig.1.

Fig.1. The generalized block-diagram parallel problem-oriented
DCS

The scheme contains three main components: the system of parallel
memory (SPM), operational devices OD1,0D;...,0ODy and control-
ling automaton (CA).
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SPM can simultaneously interact with N operational devices. In
this case all conflicts concerning with installation of physical link be-
tween C'A and the memory generated by necessity of simultaneous ac-
cess to arbitrarily addressed cells of memory several OD, are solved
inside the memory. The methods of design of such SPM are known
and described, for example, in [4].

The memory capacity E necessary for algorithm implementation,
can be defined according to a technique from [5] by maximum number
of various variables of algorithm, considering their coincidence. The
access time tgpys depends £ and N. Hereinafter we shall come from
that dependence tspp(E, N) is known.

When values of E are small SPM can contain E independent reg-
isters, and the necessary circuit of the registers choice, writing/reading
of an information in/from the registers are included in appropriate OD.

Each operational device will implement a group of defined opera-
tions, specified by GSA, and represents of composition of an operational
automaton and a controlling one. The methods of synthesis such OD
with beforehand specified lists of operations are enough well developed
and are described, for example, in [6- 8]. Problem of T'S — coordination
of separate OD is considered in [2]. Let’s note, that each OD and CA,
represented in fig.1, has the autonomous of clock frequencise genera-
tor. The frequency of these sequences can be various and is subject to
definition in a process of synthesis of OD and CA.

CA will implement the parallel control process flow in the sys-
tem, which only initializes the certain OD for fulfillment of specific
operations. Properly execution of operation in OD happens in an au-
tonomous mode under the control of its own countrolling automaton
included in the structure of OD.

The increment of switching time CA practically does not influence
the execution time of algorithm. Therefore we shall consider the task of
synthesis CA as the independent task, for solution which it is enough
to formalize DCS the parallel controlling process flow, for example,
as parallel GSA (PGSA). For logical synthesis of CA, implementing
beforehand specifed PGSA, there are detailed manuals, ensuring syn-
thesis of CA on a criterion of the apparatus costs minimum without

173



V.Kondrat’ev, Y.Bazhanov, A.Balabanov

limitations on period of clock pulses [8,9].

3 Sequential GSA

Let’s define the sequential flowchart of algorithm G (as quintuple
< GaQamzau >):

1. Z — is the set all variables (cells in parallel memory), on values
of which the algorithm G represented by its own GSA. And also
Z = XUY UAU B, where X — is the set of input variables
of operator and conditional vertices of GSA; Y — is the set of
output variables of operator vertices of GSA; A(B) — is the set
of an input (output) variables of GSA of G. The sets X,Y, A and

B can intersecteach ofher.

Let x; € X,y; € Y,a; € A, b; € B, then X;,Y;, A;, B; are the sets
of values (states) correspondent to this variables (memory cells).

2. u—is the controlling variable with a value from the set U = {0, 1}.

3. @ — is the set of operator vertices (operators). The operator
¢; € Q implements the mapping V; x Vo x ... x V,, — H,
which implements the function h = @;(v1,v2,...v,), where v; €

X,i = 1,n,h € Y,V;(H) — is the set of variables v;(h), x, —

the Cartesian product, ¢; — are function (mapping realized by an

operator) names.

The various operators with the same function name (equivalent)
are possible. Let (i) € F; where Fj— is the set of different

operators).

4. W — is the set of conditional vertices (identifiers). The identifier
w; € W implements the mapping V; x Vo x ... x V,;, — U,
which implements the logical function u = );(vy,v9,...v,), where
v; € X,i = 1,n,1; is the name of the logical function (mapping
implemented by the identifier). Identifiers also may be equivalent,
i.e. have an identical name of logical function. Let 1; € Fy (Fy —

is the set different identifiers).
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Let’s assume, that F; and Fy in aggregate will form function-
ally full set of operations F'(F = F; U Fy). In [7] the sets of
different operations forming a functionally full set of the opera-
tions F' is given. For example, F' = {:=,+,—,*, /,=, >}, where
Fy = {:=,+,—,*,/}, F, = {=, >}; := —is the operation of assign-
ment; +, —, %, / are operations of addition, subtraction, multiply-
ing and division accordingly; > (=) fre comparison operations —
operations.

5. G — is a digraph specifying order relation on the sets ) and W.
This graph should satisfy the known properties of a sequential
GSA, listed, for example, in [8]. Let’s remark also, that along
with use at a construction of the graph G of all main structures
of a type: the sequence, ifthen and IF-THEN-ELSE the organi-
zation of cycles is possible only on the “do until” type. The in-
troduction of this limitation on organization of cycles facilitates
obtaining later the acyclic form of the graph G without pendant
points of graph, necessary for performance of the algorithm of
the TS - coordination. At the same time, from the theory of
structured programming it is known, that the structures listed
abo veare anough to present any sequential GSA [10].

Any point in the graph G we shall designate as ¢;,i = 0, k, where
go and g — are initial and final point correspondingly. Let mapping
(operator) A — Z, corresponds the point gg establishing equivalence of
variables from Z and A, and mapping (operator) Z — B corresponds
to point gg.

To the other edges of a graph, outgoing from conditional points,
there correspond conditions, i.e. values of variable u, which are de-
termined by ideuntifiers of these points. To the remaining edges there
correspond unconditional sequences of operators.

As a whole sequential GSA G describes some mapping A1 X Ay X
<. X Ajq = By x By x ... B|p|, where | X| — is the power of set X.

As an example we shall consider the sequential GSA, intended to
calculate of the following relations:
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11
b1 = Z Qg Zf a1 < 067
=2
i 7a13:|:\/a%374a12a14 .
bog = %a1s if a1 > 0.6

where by 3 — are the radicals of a quadratic equation:
a12w2 + a132 + a4 = 0.

The sets Z, X,Y, A, B,Q and W for this example have the form:

Z ={z/i=1,35}, X ={z/i =1,25} U{z/i = 28,35},
Y = {22,23} U{z/i = 17,27},

A={a;/i =1,22}, B ={bi/i =1,3},

Q ={q¢/i=1,15}, W = {wy, Wa}.

The variables z;,7 = 28,35 accept constant values 0; 0; 6; 1; 2; 3;
4; 10; -1 accordingly.

The graph G is represented at fig.2, the operators and identifiers of
which have the following interpretation:

go: (a1 = z1,a9 = 24,03 = 25,...,a14 = 216,
a5 = 228,016 = 229,...,022 = 235)7
1 1,zi < 2y . .
LU= 7 1217 = Z31 * 214 13 223 = 235 * 215
g 0,21 > 29 g s g >
g2 1 z2 = 230, g8 1 218 = 214 * 216, 914 * 224 = 222 + 223,
g3 i Z3 = 228, g9 219 = 215 * 215, 915 * 225 = 223 — 222,
94t 23 = 23 + 25, + 232, 910 : %20 = 233 * 218, 16 : %26 = 224/ 217,
g5t 22 = 22 + 230, 911 ¢ %21 = 219 — Z20, 917 : Z2r = Z2s5/717,
1,22 < 234 gk (23 = bl,
96 :u = Z G12 ¢ 222 = /721 = _
0,22 > Z3a ’ 296 = b2, Zor = b3)
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Fig.2. The example of graph G

4 Maximal Case of Parallelized GSA

Let us select in sequential GSA the set G of linear parts (blocks) L =
{L;}, 1 = 1,v where i — is the ordinal number of the block; v — is the
number of linear parts of GSA G. Each block L; represents sequential
connection of some number of operators ¢; € Q.

Sequential GSA of G gives on set M = QU W U{go, g} the binary
relation of direct order of operators and identifiers. For a,b € M; a3*b
is executed af*b, if the points a and b in GSA G are connected by an
edge directed from a to b.

Let M; relation — set of all operators ¢; € @ of a linear part L;. We
shall define on M; the following four relations 3/, 8;,e; and o

e 37 —is the relation of direct order of operators of the block L;. For
a,b € M;,af],bis executed if and only if a'b, and the operator
a is not an output operator of the block;

e 3; — is the relation of oeder of operators in the block L;, being
the transitive closure of 3};

e ¢/ — is the relation of information dependence of operators of the
block L;. For a,b € M;,aejb, is executed if the output variable
s of an operator a is one of input variables of an operator b and
one of the two conditions is executed:
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1) af;b is executed,

2) there is a chain of operators ¢;, gi, . . . g;, , for which the con-
junction (a3} ¢i,) A (¢i, B qi) N+ A (g, 57 b) is executed and
any of operators of this chain has not a variable s as an
output;

o —is the relation of direct dependence of operators of the block L;.
For a,b € M; ob is executed if one of the two conditions is executed:

1) a€lb is executed,

2) the operator a has as an input/output variable some variable
s, which the operator b has as an output variable, and af;b is
executed.

The relation o establishes on set M; the sequence of operator exe-
cution of the block L; in time. So if aq,...,ax,b € M; are all those and
only those operators, for which (a;Largea;b) A (agLargec;b) A ... A
(ag Largea;b) is executed, the operator b may to begin to execute only
after execution of all operators aq, ..., ag.

We form of the set M; of operators of the block L; two subsets
MH® C M; and M¥ C M; (M and M can intersect). We shall
include operators a, for which is executed ]3b(baa), to a subset M.
The subset M will contain by operators a, satisfying to a condition
13b(acb).

The operators a € MiH have only input variables of the block as
input ones. The beginning of execution of operators a € M; in parallel
GSA depends on the simultaneous beginning of execution of operators
a € M} and their termination depends on the termination of execu-
tion of all operators a € MiK .

Let G, is the subgraph of the graph G of sequential GSA G, defined
on set M;, and I; is the subgraph of the graph I of parallel GSA P, de-
fined on set M; and reflecting the relation «;. Then the parallelization
of the block L; will mean transition from the graph G; to the graph I]
(fig.3), where I} differs from I; only by addition of fictitious operators
of multisequencing R; and connection S;.
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Thus, parallel flowchart of algorithm P can be defined as quin-
tuple < I',Q, W, Z,u >, where Q,W, Z,u are determined by sequen-
tial GSA G, and I’ - is a digraph defined on set of the operators
MU{R;,...,R,}U{S1,...,S,} by parallelization of all linear parts L;
of the sequential GSA G.

The relation o] determines the maximal degree of parallelization of
operators from set M; therefore parallel GSA P we shall name a GSA
with vaximal parallelization.

For sequential GSA, the graph G of which is represented at fig.2,
we shall obtain: v = 3,L = {L;/i = 1,3},My = {g2,93}, My =
{94,95}, M3 = {g;/i = 7,17}. The graph Iof GSA P with maximal
parallelization for this example is shown at fig.4.

: By
T 12| .2 |Mf'|

GE) | = 1 (a})

1N2 . IMfl
l Sl

Fig.3. The transition from the graph G; to the graph I
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Fig.4. The graph I/ of GSA P with maximal parallelization

5 Execution time of algorithm

Let for each point ¢ € QUW of sequential GSA G the set of acceptable
its implementations (set of operational devices are equivalent in the
functional) Rg,g = 1,2,...,|Q| + |W] is known. And for equivalent
points the corresponding sets R, coincide. For points gg and g, Rg = 0.

Let’s designate as ry/. = (84/c,ty/c) ¢-th implementation of point
g, where ¢ = 1,2,...,|Ryl|,s4/. and t ). are accordingly complexity
and the average execution time of point g under condition that the
operational device constructed following the scheme c is used. Let’s
assume, that all objects which are included in the set Ry, will form
group of Pareto optimal devices. Thus sy/1 < sg/0 < Sg/|r,|, and
tgjn > tg/2 > tg/|Rg\7v9 eEQUW.

Let’s consider sequential GSA G with selected linear parts L;. Let
input variables a; € A of algorithm are random variables with given
probability distribution. Then the statistical simulation of GSA G
allows, using techniques from [7,11] to determine an average ny of rep-
etitions of k-th cycle. It enables to reduce the graph G GSA G to an
acyclic G4, which the same execution time.

The graph G is obtained from the graph G by deleting all edge
that close cycles. Thus the average time ¢ /. of execution of all imple-
mentations 4/, of each point g, that alongs at least to one of cycles,
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is increased in ngy time, where ny, = n;, o ... en; . and 4q,...,%, are
numbers of cycles, which to point g belongs.

By parallelization of all linear parts L; of sequential GSA G, repre-
sented by the acyclic graph G, we shall obtain the acyclic form I} of
graph I’ of the parallel GSA P.

We shall evaluate the execution time of algorithm using the net-
works constructed because of the graph I} using the following rules:

1. Each point g € I/ with number of outgoing edges p*(g) > 2 is
doubled according to fig.5. And the points g— g’ are connected by
continuous arrows, and ¢’ — g1,9' — go,..., 9 — g; by dashedones.

2. To the point gy € I, in a network corresponds the initial point,
and point g € I} is final.

3. All points of a network graph are numbered by positive integer
numbers. Number 1 is assigned to the initial point. The final
point obtains maximum number.

Fig.5. The doubbing of the point g € I},

Each continuous arrow of a network corresponds to computing job,
fulfilled by OD, implementing one or another vertex of the graph I,.
Dashed arrows of the network correspond to fictitious operations having
the zero duration and cost. Besides the operations correspoding to the
vertives go, R;, and S; yave the zero cost (on a network these operations
are designated by continuous arrows).

Each point of network means some event, nameey the termination
of all operations, which arrows ender the selected vertex, and the be-
ginning of those operations, which arrows goesout the same vertex.
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The earliest time ti of a beginning for all operations, for which ¢-th
point of the network will precede, is calculated under the formula [12]:

t; = maz{ty +tgi},1 = 2,n;t; = 0;t, =T,

where tg; is the execution time of operation, beginning in point with
number k£ and finished in point with number i; T — execution time of
algorithimn.

Let the arc (k,4) of the network corresponds to the top g € QU W.
Then

thi =ty = ng((mg + a)tspm (B, N) +tg/c +tca), (1) (1)

where m, is an amount of necessary arguments of an operator / recog-
nizer g,« = 1 for operator points, = & = 0 for conditional points, tc 4
is the time of switching CA.

The clause (g + a)tspy (£, N) in (1) takes into account of the
acces input data and write the of result in SPM. The writing of a
variable u in SPM is not done, therefore for conditional points @ = 0.
The time ¢4/, should be calculated in the supposition, that the input
data and result of operation are stored in the registers OD.

If the point g € {go, Ri, Si} corresponding to an arc (k,i) of the
network,

tei = t; =ngetcA. (2)

The network allowns to interpret the graph I, using the language
of computing operations made by operational devices when executing
operator and conditional points of the graph I. And such interpreta-
tion as a matter of fact ignores an alternate character of distribution
of the computing process through conditional points.

It allows automatically to take into account all possible paths of the
computing process without their explicit construction. The value of T
thus will be efnal to the average execution time of the longest path.

6 MC-classes

Let’s introduce a sequence of necessary definitions.
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Definition 1 Two operators a,b € M; are compatible, if their execu-
tion on one OD does not lead to increase of T' calculated under the
condition, that each operator is executed on separate OD.

Definition 2 Some set of operators from M; will form the class of
compatible operators, if all operators, included in it, in pair are com-
patible.

Definition 3 The class of compatible operators is named as mazximal
(MC —class), if in the class of addition to it of any operator from M;,
not belonging to the class, it ceases to be compatible.

Definition 4 the subgraph generated by a sequence of points gi,, Gi,,

o5 Gin (9i; € MyU{R;, S;}), in which each two adjacent g;, and g;,, ,
are connected by arc (gi,, 9i,,,) is called a path p = (giy s Gy - - -5 9i,,) Of
the graph I}. The first point of path g;, we shall name the initial point
of path, and the last g;, the final point of path.

Definition 5 The path p = (gi,, Giyy - - -, 9i,) in the graph I, we name
a route, if it begins with point R;(g;, = R;) and is finished in point
Si(9i, = Si)-

Let’s consider any path u = (gi,, giy, - - -, gi, ) in the graph I/. Each
vertex g;; of this path can start executing only then, when all vertices
gi,» k < j are executed. From here follows, that intervals of time of exe-
cution of any two operators a,b € {g;,, gis, - - -, i, } are not intersected.
It means, that the execution time of all points of the path is the same
and does not depend on an amount OD, necessary for implementation
of these points. The following lemma therefore is correct.

Lemma 1 Set of all vertices {gi,,iy,---,9i,} of any path p =
(Girs Gins -+ -+ Gin)s 9i; € M;U{R;,Si} of the graph Ij will form the

class of compatible operators.

This lemma allows to prove the following theorem a bout the rela-
tion of the chains of edges to MC-classes.
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Theorema 1 Tye set of all points {gi,,Giy,---,i,} of any route p =
(gilag’i27 s 7g’in)7g’ij € M’ia j = 27” - 17911 = R’ia 9i, = SZ Of the gmph
I will form the MC - class.

> Set of verties {gi,, gi,, - - - , i, } of some route pu = (giy, iys - - - » i, )5
will form a path. Therefore, starting from the Lemma 1, set
{9i,+Giys-- -, 9i, } 1s the class of compatible operators.

Any other operator a € M;\{9i,,9i,,---,9i,_,} belongs to other
rout ¢’ = (g,,9i,,---,9; ). The routes p and p' of parallel graph
I} can intersect, but it necessaryly contain parallel (not intersected)
perts. The operator a belongs to one of such parts. It leads to the
intersection of intervals of execution time of an operator a and even one
of operators b € {g;,, gi,,---, i, }- Therefore execution of operators a
and b cannot be combined on one OD without loss of speed, so they are
incompatible. Thus, it is impossible to expand the class of compatible
operators {gi,, gi,,---,9i, } not breaking a property of compatibility
of operators. Therefore, set of points {gi,, gi,,.-.,9:,} of route u =
(Giys Gins - - -+ 9i,) 18 MC -class.<

Let’s consider the procedure of a construction of all routes of the
acyclic graph I]. Let’s assume, that all points of the graph I} are ranged
so, that the rank 1 is assigned to point R; and any other point can be
referred to a rank [, if it is connected with its entering arcs to the points
of arank [ — 1,/ — 2,...,1. The maximum rank corresponds to point
Si. To each point g; of the graph I] we shall assign the set gy, of all
different routes, beginning in point Ri and finished in point g;.

Let point g;, of graph I] is connected with its input arcs to points
Giv»> Giss - - - » 9ip » for which the correspondent sets Pjsy s Pjsy o - - - » My, aTe€
already defined. Then the rule of finding of set yj; includes the two
items:

1. To calculate intermediate set ,ug-in by association of sets, 1, , f1;,
v
“ oy My, OF :ug'in =U Hgi]-;
i=1

2. To each route of set ,u’gi_ to add the vertex g;, at the right-hand
J
site. As the result we shall obtain set p4,,.
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According to this rule, assuming pp, = {(R;)}, we shall find sets
pg; for all points g; of the graph I !, sequentially looking through points
of a 2-nd rank, then 3-rd rank etc. The set pug, will contain all various
routes of the graph I.

By virtue of the theorem 1 set ug, also determines all MC-classes
of operators from set M;.

As an example we shall consider the subgraph I, of the graph I’
represented on fig.4. The set of all routes fzg; has view:

= (8,10,11,12,14,16) 7° = (8,10,11,12,15,17),
. 2 =(, 1 12,14,16) 7° =( 12,15,17),
HSs = ﬁ (13, 14, 16) ﬁ (13, 15,17),
= (7,16) = (7,17)

The set p, is obtained from set p, by deleting from each route the
points R; and S;, and the i- th route 1" = ¢j,Giy; - - - i, In set fig, is
denoted more compactly as ' = (i1,%2,...,0).

7 Minimal Partitionings of Operators

At first we shall consider the task of covering of set of operators
M, with the minimal number of classes of compatible operators

Qi1 Qi2, -y Qg

Definition 6 The system of sets Q; = (Qi,1,Qiz2,---,Qix) is named
the covering of set M;, if the following conditions hold:

1. Q’L,j C M’La] = ]-a—ka

2. Qij,J= 1,k is the class of compatible operators,
k
U Qi = M;

Definition 7 Covering Q; = (Qi1,Qiz2,--., Qi) is named minimal,
if other covering Qi = (Q; 1, Q 2, -+, Q; ), such,that m < k, does not
exist.
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The following theorem considerably simplifies the task of search of
minimal covering.

Theorema 2 In minimfl covering Q; = Qi 1,Qi2,-..,Qix all classes
of compatible operators Q; j,5 = 1,k, are mazimal.

> Let us assume, that there is a minimal covering ); = Q; 1, Qi 2,
.., Q; x, which has at least one class of compatible operators @; ; theat
is not maximal. Then there is a MC-class @Q;; D Q;J and the substi-
tution Q) on Q;; will leave the system of sets Q; = Qi1,Qi2: .-,
Qi x be the covering and will not lead to increase of number of classes
of compatible operators. The repetition of such substitution for all
classes which are not being maximal, will allow to obtain the cover-
ing Q; = (Qi,1,Qi2,-..,Qix) with number of classes not greater than
starting minimal covering (). And each class of compatible operators
Qi.j»7 = 1,k will be maximal. <

Corollary 1 For a construction of minimal covering Q; = (Qi 1,
Qi ..., Qi) of the sets of operators M it is necessary to analyze only
MC-classes of set of operators M.

The technique of finding of minimal covering @); is connected with
a construction of the table of coverings F;. The lines of such table
correspond to MC-classes of set M; (routes of the graph I;), while
columns to operators g; € M;. On an intersection of line 4 and column
j the label is put, if the MC-class appropriate to i-th line, is covered
with an operator appropriate to j-th column. The MC-class i is covered
with an operator j, if the j-th operator belongs to the i-th MC-class,
e.g. the route, corresponding to the i-th MC-class, passes through the
j-th operator.

To find minimal covering in the table of coverings it is necessary
to select the least number of table lines, such, that they by units have
covered all columns with labels.

The similar task arises at minimization of Boolean functions by
Kwain method with the help of the implicant tables, and is now enough
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well investigated. Therefore the all exact (for the tables of small di-
mensionality) and approximate (for the tables of large dimensionality)
the methods of searching of minimal covering of the implicant tables
described, for example, in [13], can be used and for construction of
minimal coverings @); of sets of operators M; without any changes.
Let’s consider now task of partitioning of set of operators M; into
minimal number of mutually not intersected classes of compatible op-

erators Q;1, Q2 - -+, Qi k-

Definition 8 Covering Q; = (Qi’l,éi,g, e Qi,k) of set of operators
M; is named a partition of set M;, if Q;j N Qim =0, §#m.

Definition 9 Partitioning Q; = (Qi’l,éi,g, .. -7Qi,k) is named mini-

mal, if other partitioning Q; = (Q; 1, Q5 2, - - -+ Qf ), such, that m <k,
does not exists.

Let’s prove the following theorem, which considerably simplifies the
task of a construction of minimal partitioning.

Theorema 3 Minimum covering Q; = (Qi1,Qiz2,...,Qik) becomes
minimal partitioning Q; = (Qiyl,Qiyg,...,Qi’k) with the same wvalue
k,if every time, when Q;; N Qim # 0,7 # m, one of the classes of
compatible operators, for example, Q; m, will be transformed under the

Jormula: Qi m \ (Qij N Qim)-

> At first we shall show, that initial covering Q; = (Q;1,Qi2;- -,
Qi) as a result of conversions, described in the theorem, becomes a
partition.

For this we shall mark, that the set obtained by deletiong of some
number of operators, from the class of compatible operators remains
the class of compatible operators. Therefore conversions being made
connected to deletion of some operators from sets (); j, 7 = 1, k, leave
thein to be the classes of compatible operators. Besides the deletion of
common operators of two sets Q; j, jandQ; ,, only from one set (Q;,)
leaves the set (Q;;j U Q;,, without changes. From here follows, tyat

k
after conversions 4U1 Qi,j = M; and this by definition 6, means, that
‘7:
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the system of Q; = (Qi1,Qip2,-..,Qik) after conversions remains the
covering.

Taking into account, that conversions are directed to obtaining of
not mutually intersected sets, we come to the conclusion, that as a re-
sult of conversions the starting covering really becomes the partitionibg
(see definition 8).

Now it is necessary to show, that the minimal covering in a course
of conversion passes into the minimal partitioning.

For it we shall assume, that the conversions lead to partition Q; =
(Q;yl,QLQ,...,Q;J) and | < k. Let Q;J be not the MC-class. Then
there is a MC- class Q” C Q;J and the substitution Qi’j/ on Q”
keeps the system of sets (~;71,...,ngj_l,();’j,égjjﬂ,...,Q;’l) to be
the covering and also does not lead to increase of number of classes
of compatible operators. The repetition of such substitution for all
classes which are not being MC-classes, allows to obtain the covering
Qi = (Qi1,Qi2,...,Qi ) with number of classes | < k, that is the
contradiction, because minimal covering was transformed according to
a condition of the theorem. <

The minimal partitionings Q; of sets M; allows to define minimal
number N,,ax OD, necessary for implementation maximal parallelized
GSA without loss of speed.

Let Ny, be the minimal number OD, necessary for implementation
of the graphl; without loss of speed. The value Ny, is determined
by powerof minimal partitioning of set M;, ie. Nj = |Qi|. Then
Ninaz = max Ny,

Let’s clonsider set of operators M3. The table of coverings Ps is
represented as table 1.
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Table 1

71819101112 13|14 |15 |16 | 17

1
70 1 1|1 1 1
1
1

A1

With the table P3, using [13], we find the minimal covering @3:
Qs = ({7,16}, {8,10,11,12,14, 16}, {9, 11,12, 15, 17}, {13, 15, 17}).

By the theorem 3 from minimal covering ()3 we shall obtain the
minimal partitioning Qs:

Qs = ({7,16},{8,10,11,12,14}, {9, 15,17}, {13}).

From here it is easy to see, that N, = 4. By doing similar procedures
for M, and My, we shall obtain:

Ql = ({2}7 {3})7 Ql = Qla QQ = ({47 5})7
Q2=Q2, Np =2,
Ny, =1, Nypaz =4

8 GSA with a necessary and sufficient degree
of a parallelism

The degree of a parallelism GSA we shall evaluate by minimal number
of operational devices necessary for implementation of the GSA without
loss of speed. Obviously, N = 1 corresponds to the sequential GSA,
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and N = Nax — maximal parallelized one. To intermediate values N
correspond to GSA distinct from of the extreme cases, which are the
sequential and themaximal parallelized GSA

Among these intermediate meanings N there is such N = Ngp,
to which corresponds GSA with a necessary and sufficient degree of a
parallelism. It means, that at N = Ngp there exists a GSA, for which
T < Ty;p (condition of sufficiency of a degree of a parallelism GSA), and
already at N = Npp —1 for all GSA T > Ty;, (condition of necessity).
Thus the calculation T" should be produced in the supposition, that the
most high-speed implementations of operator and conditional points of
the GSA are used, and the time of switching of CA is determined by
the time of switchingtc 4/n,,,, CA, constructed for extreme parallelized
GSA, i.e. in the formulas (1) and (2) tcA =ty a/N,pa,» tgje = o/ |R,) V9-

Let’s consider two methods of lowering of a degree of a parallelism
of the GSA: sequential and logarithmic. The first method represents
the multistage process, which allows, starting from the maximal paral-
lelized GSA (N = N,»qz) to reduce a degree of a parallelism N at each
step per 1, modifying thus in appropriate way the GSA constructed on
previous step. The process proceeds until the GSA will be found with
a necessary and sufficient degree of a parallelisimn.

We shall accept the following denotations: I;; is the modifi-
cation of the graph I; on k-th step (k = 0, Ly = I;; at k =
(Nmaz — 1)Nuyp = 1, and I;p,,,..—1 is the graph of the relation

ik =0, (Nmaz — Nup)): Qj is the partitioning of set of operators
M; at k-th step, Ny x) = Ni,, Is the minimal number OD, necessary
for implementation of the graph I; ; without loss of speed.

Let at 0 —~2 step of the sequential method N = Ny, lig =

Iz;Q ( 117Q22a---aQ1NI(10)) Qz—(QzlaQZQa---anNI(l) 1=
1,IJ,N]2. = Nli‘

On k-th step N = Npar — k, it is necessary to change the graphs
I; 1 and partitioning Qk_l for which N1I; _1 > Nyae — k only. For

the remaining graphs and partitionings I; = I; 1, Qk Qk L

The partitionings Q? ! being subject to change at k-th step, are
modified at first in to intermediate partitionings Qf (j1,J2) under the
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following formulas:
Qhtr.d2) = (@112 Qv G, (1:52))
where
QF (1, 42) = QY5 U QY
J1,92 €{1,2,.... Np, s J1 7 Jo
QF ;(j1s2) = QF 1 d =2, N1,y 1, J3 € {1,225 N, 1},
J3 # . I3 # Jo-
According to these relations the set Qﬁ 1(41,42) is determined by asso-

k-1

ciation of two classes: Q*~'andQF=', and the remaining classes @); s

2,J1 2,J2 7
pass in to partitioning Q¥ (j1,j2) without changes.
Let we have set of operators Qf,jl (J1592) = {Gi1» Gizs -+ Gim > 9i; €
M;, iy > iy... < iy,. To the intermediate partitions Qf(jl,jg) there
correspond the I; ;(j1, j2), which are created under the following rules:

a) In the graph I; ;_; the path p = (g, is,---,8i,) is be formed
with the help of additions of missing arcs;

b) In the graph obtained after execution of an item a), from each
route 1 = (g1, 9j,, - - -+ 9;,) all arcs of a type (g;,, gj,,) are deleted
provided the condition m # p + 1.

Average execution time of the longest route of the I; ;(j1, j2) and
I; j, we shall designate by T; ;(j1, j2) and T}, accordingly.

It is convient to represent the values 7T; 4 (j1,52) as the triangular
table, cells of correspond to all different unnordered pairs of classes
of compatible operators Qf,]_-lland Qf,]_; of partitioning Qf‘l. The cell
located a the intersection of j;-th column (j; =1,2,..., Ny, ,—1) and
of jo-th line (j2 = 2,3,..., Ny, ,_,), is filled by the value T; x (51, j2).

2
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The triangular table allows finally to determine partitionings Qf
and graphs I; ; as follows:

J1,J2

Ji,J5 = arg (min)(Ti,k(gl, g2) — Nijg—1)

Time T}, of execution of algorithm as a whole on k-th step we shall
evaluate using the graph I'a, k. This graph is obtained from the graph
I, by substitution of its subgraphs I; by I, s, i = 1,v.

With great values Np., and/or complex GSA the sequential
method can require excessive temporary expenditures and storage
space. In this case for lowering the degree of parallelism of GSA it
is possible to take advantage of a logarithmic method (method of half
division). This approximate method is much less labour-consuming in
comparison with a sequential method, but also it is less exact, as comes
from smaller amount of a necessary information.

The maximal execution time of method of half division is
l0g2(Nmaz — 1) steps. We shall describe the first step explicitly. For
this we shall designate by N~ and NT accordingly the left and right
boundaries of an interval (N~ < N), containing the Ny p value. All
the first step N~ = 1, NT = Ny0z-

The middle of an interval N,,;; is calculated under the formula:

Nt — N~

Npia = N7 +] 5 ]

where [z] is the integral part of z.
The N,,;q value allows to determine the amount of iterations
k = Npaz — Nmid, which are necessary to execute for obtaining the par-
titionings QF = (QF, QL.+, QF k) (6 k) < (Njnia, i =L,
The partitionings Qf* are determined mainly in the game way as
in a sequential method. The exception makes only that:

1) The graphs I; 5, k=1,k*4=1,v are not created;
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2) The values j* and jj on k-th of iteration (k = 1,k*) are deter-
mined as follows:

Ji =ar min tf]_-l,
j€{1727"'7n(i7k_1)} ’
% . k—1
J2 =arg in g
je{.2,...n(ik- DN}

where

k—1 !
g = 2ty
9€Q;;"

Let the set of operators Qfl =1{09j1:9j2s - Gjm}» 99, } € M, 1 <
jo < ...<jm, l=1,n(i,k*), j=T1,v. The partitionings Q¥ allow
to construct the graphs I; g~,7 = 1, by the following rules:

a) In the graph I; the paths Mf,l =19j1:9jss---Gjm }, 1 = 1, (3, k*).
Are formed by addition of missing arcs;

b) In the graph obtained the after the item a), from each route
1= Gj1s 9jss - - - 9jp» all arcs of a type (gj, , g;,) are deleted provided
that s # (r +1).

Let T be the average execution time of the longest path of the
graph [ "I’k*, which is obtained from the graph I (a by substitution of
all subgraphs I; on I; j=,i = 1,v).

After calculation of the of value T' the transition to the following
step is implemented by determination of new boundaries N~ and N+
by the rule:

Zf TZTgiv N_ :Naveru
'Lf T< Tgiv Nt = Naver

The process is finished, when at the next step the length of an
interval NT — N~ equals 0 or 1. In this case Nyp = N, and the
necessary graph I yp = Ij 1. at k* = Npaz — Nup.

Let’s consider as an example a sequential method of decrease of the
degree of the parallelism of GSA in connection with maximal paral-
lelized GSA P, the graph I' of which is represented at fig.4.
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The execution time of all operator and conditional points with the
help of separate OD of given GSA with regard of extraction of operands
from SPM and writing of results in memory using conventional time

units is reflected in tab.2.

Table 2
points t’g/‘R| /t,
g0, Ri, Sl 0.1
91, 96 4
92, 93 1
94 9
95,914 b
97 --- 910, 913 150
911,915 b
g12 200
916, 917 170

The sequence of steps at Ty;,, = 700 the form:

Step O.

QY = Q1= Q1= ({2},{3}), L1 = [1, Niy =2,T10 = 1
QS = Qo = Q2= ({4,5}), Lo = Iy, Niy = 1,To 9 = 15
QY = Q3 = ({7,16},{8,10,11,12,14},{9,15,17}, {13}),
Izo = I3, N;, = 4, T3 = 680;
N = Npao =4, Io=1, To=06843
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The graphs I1 g, 12,130 and I, are represented at fig.6, a-d ac-
cordingly. The numbers at vertices of the graphs designate execution
time of these vertices.

Step 1.

N = Npaz — 1 = 3;

Qi =QY, 11 = Ly, Niy, = 2,111 =T

Qs=0Q% Iy = Iy o, Niy, = 1,151 = T 0;

Q:l,)(l, 2) =({7,8,10,11,12, 14,16}, {9,15,17},{13}),
Qé(l, 3) =({7,9,15,16,17},{8,10,11,12,14},{13}),
Qé(l, 4) = ({7,13,16},{8,10,11,12,14},{9,15,17}),
Q%(Z 3) =({9,9,10,11,12,14,15,17},{7,16},{13}),
Q%(Z 4) = ({8,10,11,12,13,14},{7,16},{9,15,17}),

Q3(3,4) = ({9,13,15,17},{7,16}, {8, 10,11,12,14}),

The graphs 13,1(1,2), 13,1(1,3), 1371(1,4), 13,1(2,3), 13’1(2,4) and
I31(3,4) are represented at fig.7, a-f accordingly.
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Fig.6. The graphs I1 9, 2,0, 13,0, Iy o

5 170 170
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20 21 £ 2
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o ] 150 150 150 5 o 5 5 1m0
150150 g/ 5 170 & & & 81 &z 84 B Ao
Firs pd 150 170
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8
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Flg7 The graphs 13,1(1,2), 13,1(1,3), 13,1(1,4), 1371(2,3), 1371(2,4),
and I371(3,4)
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Values T3 1(j1,j2) are shown in table 3. With the help of the table
one can find:(j7,75) = (1,4).

J2
2 | 830
31850 | 835
41680 | 730 | 680
1 2 3 n

Therefore
G = QAL 4), Ly = L (1,4), Ty = 680

The graph I, is represented at fig.8, from which it follows that
T = 684.3.

Fig.8. The graph I
Step 2. The calculations at this step show, that T5=839.3.
The value Ty;, =700. Therefore Nyp=3, and the graph I, ; repre-

sents the acyclic form I, ;, of the graph I}, of the parallel GSA with

a necessary and sufficient degree of a parallelism. This graph is shown
at fig.9.
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215 &7

2 n g2 2 @ S5

Fig.9. The acyclic form I, ;, of the graph I}, ;, parallel GSA

9 Agorithm of TS - coordination of the parallel
DCS

All above-stated allows us to formulate the algorithm of TS - coordi-
nation parallel of the DCS as a sequence of the following items:

1) Selection in the sequential GSA (of the set of linear parts L =
{L;} and determination for each linear part L; of the sets of
operators M;.

2) Determination of an average number 7y of repetitions of each
cycle. Account for each point g of the graph G of an average
number n, of repetitions with regard to the belonging of point g
in a various cycles (taking account of nested cycles).

3) Construction of the acyclic form G, of the graph G GSA G.

4) Maximal parallezitation of all linear parts L; of acyclic graphs
G, and obtaining of the acyclic form I of the graph I of parallel
GSA P.

5) Construction for each set M; of minimum partitionings Qi1 =
1, v and definition of minimal number N,,,,; of operational devices
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necessary for implementation of GSA without loss of speed. Syn-
thesis of CA for maximal parallelizied GSA and implementation

tCA/Nma:c .

Construction of the parallel GSA with a necessary and sufficient
degree of parallelism Ny p by finding minimal partitioning Qf =
(Qf,*lv Qf,gu R Qf’;(i,k*))ui =Lk = (Nmaz — Nup), and also
graphs I! ;) and I}, using for this a sequential method or
a method of half division. Synthesis of CA for PGSA with a
necessary and sufficient degree of a parallelism and determination

OftCA/NHD'

Distribution of the set of operator and conditional points QQ U W
on to operational devices OD,0D,...,ODy,, .

The conditional points are compatible one with another. Besides
each conditional point is compatible with any operator point, that
enables to generate sets QQop, of points executed on j-th OD, as
follows:

Qop, = ('lzJ1 QFHUW,

v pad * .
Qop, = (.U1 QF;), 7=2Nmp
=

First stage of the TS - coordination of parallel DCS (rough ap-
proximation).

The general course of fulfillment of the first stage is shown at
fig.10. This stage can be divited into he three folowing stages:

a) At the first phase the transition from a point 1 to point 2 is ful-
filled. Preliminary optimization of the network constructed
on the graph Ia,HD, with the help of algorithm FFK here
is made. And for each point of the graph I"% yp, accept-
ing alternate construction r, /., the piecewise linear convex

199



V.Kondrat’ev, Y.Bazhanov, A.Balabanov

s

approximation of the set of possible implementations R,
Pareto optimal, in a plane of complexity and delay is used;

»T

Fig.10. The general course of fulfillment of the first stage

b) The second phase provides transition from point 2 to point

3. At this transition the discrete optimization supposing
the analysis of all works (points), lying on critical paths and
choice (is long as it is possible) more simple implementation
for that work (point), which provides maximum decrease of
complexity per unit of delay at the next step.

Tye result of two first phases of this stage are the implemen-
tations 7y, (4), Vg € Q U W, ensuring the minimum of the
total instrument costs

S= > Sy

geEQUW

recognizing that each point of the graph I(’lj g p Will be im-
plemented on separate OD, in this case in the formule (1)
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and (2) tca = tca/ny,,- Let’s remark, that the detail algo-
rithm of fulfillment of first two phases practically coincides
algorithm A; from [1];

¢) The third phase is used for transition from point 3 to point
4 and provides the synthesis of T'S- coordinated operational
devices OD1,0D>,...,0ODy,, .
Let be the set of points implemented on the i-th operational
device, Qop, = 19j1+9js+---»9jop. } The time of execution
gj, of i-th point by separate OD ¢, is determined
by the following

95 k) /€ (95(k))
tgj(lc)/cl(gj(k)) = 199j(k)791(k)’ (3)

where ¥y, . is the average amount of clock cycles necessary
for execution of point g;, with the help particular OD; Tg; )"
duration of the clock sycle for this OD.

From the formula (3) it follows, that
Tgiy = tgj(k)/cl(gj(k))/ﬁgj(k)

The joint execution of set of points {g;,,9j,,- .-, 9jop,} on one
OD results in necessity of choice of duration of the clock cycle
Top, for the i-th OD under the formula:

Top; — min gj(k)EQopi Ty (k)

Top,; being known, it is possible to synthesize TS-coordinated
OD; with duration of the clock cycle 75, and 75, < Top;.
The algorithm of synthesis of similar objects described in more
detail is given in [2].

The average execution time ty. 1) /OD; of the point g;, on i-th
operational device is determined by the expression:

_ *
by /OD; = Dy, 4 TODy,
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10)

11)

As 16 p, § Top,, then anc} toii /0D < tgi /e (g;)- Therefore
average time 71" of execution of the longest route of the graph
I, up, calculating using the of durations tyi ) /OD; does not ex-
ceed Tyiy,i.e.T < Tgip. At the first stage éiv = Tyiv-

The second stage of T'S- coordination of the parallel DCS (clari-
fication).

At this stage the bias ATy; = Ty, —T is calculated, and if ATy; #
0 all operations of the first stage (item 8) with T}, = Tyip + ATl
are repeated. Otherwise (if AT,; = 0) the transition to item 11
is fulfilled.

The third stage of the TS- coordination of the parallel DCS (fin-
ishing).

After the second stage of the T'S- coordination of DCS the value
of T' can be both more, and less than of Tj;,. In this case the
repetition of operations described at of item 8 is necessary, with
the single purpose: by minimal (+1) changes of Téw to approach
maximally T' to Ty;, providing simultaneous fulfillment of an in-
equality 1" < Tg;,.

The end.
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