Computer Science Journal of Moldova, vol.4, no.1(10), 1996

Design of the real time systems using temporal
logic specifications: a case study

A.Ursu V.Dubenetsky G.Gruita

Abstract

An implementation method for real time systems is proposed
in this article. The implementation starts with the design of
the functional specifications of the systems behaviour. The func-
tional specifications are introduced as a set of rules describing
the partial time ordering of the actions performed by the system.
These rules are then written in terms of temporal logic formu-
lae. The temporal logic formulae are checked using Z.Manna-
P.Wolper satisfiability analysis procedure [1]. It is known that
this procedure generates a state-graph which can be regarded as
a state-based automaton of the system. The sate-based automa-
ton is used then to generate the dual (inverted) automaton of the
system. The dual automaton is called action-based automaton
and can be created using the procedure proposed by authors in
[4,5]. Using the action-based automaton of the system the design
method introduced in [5,6] is applied to implement the system
driver in a systematic manner which can be computerised.

The method proposed in this paper is an efficient complementa-
tion and generalisation of the results [4,5,6] mentioned above.
The method is used for a case study. An elevator control system
is designed using the proposed method. The design is carried out
in a systematic manner which includes:

a) design of functional specifications,

b) design of temporal logic specifications,

c) satisfiability analysis of temporal logic specifications,

d) design of the state-based automaton of the specifications,
e) design of the action-based automaton of the system,

(©1996 by A.Ursu, V.Dubenetsky, G.Gruita

88

Design of the real time systems using. ..

f) design of the transition activation conditions,
g) design of the action activation conditions,

h) design of the functional model of the elevator control sys-
tem,

i) implementation of the elevator’s actions,

j) design of the elevator control system driver.

1 Introduction

Temporal logic formalism has been successfully used in concurrent and
distributed systems specification and verification. The temporal logic
operators [1,2] turned out to be very suitable in specifying different
properties related adequately to such systems dealing with safety and
liveness. The safety and liveness properties are easily specified in terms
of temporal logic formulae. These properties are very important for
real time systems too. The designers of a real time system have to
implement the software which will work properly. Unfortunately the
information about the system properties dealing with safety and live-
ness even if it is important for designer can not be used directly in the
design of the real time control systems.

Some important results in this direction have been obtained by
Z.Manna and P.Wolper [1], and E.M.Clarke and E.A.Emerson [3], which
have proposed different approaches to satisfiability analysis of temporal
logic specifications. Both approaches allow to generate the automaton
of the specifications to be used in correctness analysis and in implemen-
tation of the real time systems. The automaton is an oriented graph,
the nodes of which correspond to the states of the system and the edges
of which correspond to the transitions between the states. Each state
is specified by a set of temporal logic formulae and each edge of the
automaton is specified by a propositional variable of the specifications.

This automaton is a state-based automaton which can be seen as
a finite-state machine and used to synthesise the synchronisation part
of the system. Nonetheless the finite state machines obtained in this
manner are not very suitable for event- or action-based implementation

89

A .Ursu, V.Dubenetsky, G.Gruita

of software systems. An action-based implementation requires a finite-
state machine the nodes of which correspond to actions and the edges
of which correspond to the control flow of the actions.

The paper shows that the initial (state-based) automaton of the
temporal logic specifications can be used in the action-based approach
of implementation of the real time software systems via an inversion
procedure which translates the initial automaton into an inverse one.
The inverted automaton consists of a set of nodes corresponding to the
set of possible actions of the system and a set of edges corresponding
to the control flow of the actions.

The rest of the paper is organised as follows. Section 2 introduces
our method of real time systems design using logic specifications. Sec-
tion 3 presents a case study which consists in designing an elevator
control system using the proposed method. Section 4 presents conclu-
sions.

2 The design method of real time systems us-
ing temporal logic specifications

In this paragraph the main steps of the proposed design method are
introduced in a general framework.
The method counsists of the following steps:

e design of the functional specifications of the system;
e explicit design of each rule of the system behaviour;

e translation of the rules into temporal logic formulae and design
of the temporal logic specifications of the system;

e satisfiability analysis of temporal logic specifications;

e design of the initial (state-based) automata of the system using
the satisfiability analysis result of temporal logic specifications;

e design of the dual (action-based) automata of the system using
the initial automata via an inversion procedure;

90

Design of the real time systems using. ..

e design of the automata transition activation conditions;

e design of action activation conditions of the action-based au-
tomata;

e design of the control structure of the system driver;
e design of the functional structure of the system;
e implementation of the system actions;

e implementation of the system control driver.

3 Design of an elevator control system: a case
study

3.1 Short description of an elevator control system —
the functional specifications

The functional specifications of an elevator control system are intro-
duced in this section in a simplified manner.

The control system is dedicated to control an elevator in a building.
The elevator is suspended from a motor-driven winch, the motor being
capable of responding to the commands Move_Up, Move_Down, Stop,
Open_Door and Close_Door. All the introduced commands have their
obvious meaning. At each floor there are buttons to summon the eleva-
tor for upwards and downwards travel (only the former at the ground
floor, and only the latter at the top floor); inside the elevator there is
a button for each floor to direct the elevator to travel to that floor. At
each floor there is a sensor switch that assumes the ’closed’ position
when the elevator is within 10 cm of its rest position at the floor, and
is otherwise in its 'open’ position.

3.2 The functioning rules of the elevator control system

According to the description of the elevator control system we introduce
here the following functioning rules:

91

A .Ursu, V.Dubenetsky, G.Gruita

Rule 1: Initially the elevator is located at the first floor and the first
action to be executed by the elevator control system must be the
action Move_Up() or Open_Door();

Rule 2: Always a Move_Up() action must be followed sooner or later
by a new Move_Up() action or by a Stop() action;

Rule 3: Always a Move_Down() action must be followed sooner or
later by a new Move_Down() action or by a Stop() action;

Rule 4: Always a Stop() action must be followed sooner or later by a
new Stop() action or by one of the following actions: Open_Door(),
Mowve_Down(), Move_Up();

Rule 5: Always an Open_Door() action must be followed sooner or
later by a Close_Door() action;

Rule 6: Always a Close_Door() action must be followed sooner or
later by one of the following actions: Open_Door(), Move_Up(),
Move_Down();

Rule 7: This rule specifies the single event condition, that is only one
action can be executed at any time. This means that the actions
of the elevator control system are executed sequentially.

3.3 Temporal logic specifications of the elevator control
system

According to the description of the elevator control system each op-
erating rule of the elevator can be specified by the following temporal

92

Design of the real time systems using. ..

logic formulae:

—PrU(Move_Up NV Open_Door); (1)
[| (Move_Up D O(—=PrU(Move_-Up V Stop))); (2)
[l (Move_Down > Q(—=PrU(Move_Down V Stop)); (3)

[] (Stop D O(—=PrUStop vV Open_Door N Move_Up
VMove_Down)); (4)

[| (Open_Door > O(—Pr U(Open_Door V Close_Door))); (5)

[| (Close_Door > O(—=PrU(Open_Door
VMove UpV Move_Down)); (6)

Pr = Move_UpV Move_Down NV Open_Door
VClose_Door V Stop (7)

3.4 Satisfiability analysis of the specifications

For satisfiability analysis of the specifications we have used the Z.Manna
and P.Wolper procedure [1]. Here we perform the satisfiability analy-
sis of the formulae (1-7) in a similar manner as in [1]. The difference
consists in the new notation for the formulae manipulation.

The procedure [1] postulates the single-event condition according to
which only single events can occur at a time. The satisfiability analysis
counsists in giving true values to a proposition variable and checking
the satisfiability of the remaining formulae of the specifications. This
operation is carried out for all propositional variables one by one.

Let us start by the analysis of the formulae (1-7).
We consider initially the state when Move_Up = true. We have:

93

A .Ursu, V.Dubenetsky, G.Gruita

Initial formula Set of next-state formulae

(1)
(2)

3
4

N N N N
— — — —

5
6

4y

S

For this manipulation the following notation can be introduced:

M ove_ Up

(1-6) (2—6,-PrU(Move_Up V Stop))

or the notation:

Move_ Up

(1—6) (2—6,8).

Let us simplify the initial set of formulae (1-6) for Open_Door =
true. We have:

Initial formula Set of next-state formulae

(1)
(2
(3
(4
(5

— — — ~—

(6)

R

=

true;
0(2)7
)i
)i
)i

—PrU(Open_Door V Close_Door)); 9)

O
O(4
O
O

O(6);

We introduce for this manipulation the following notation:

(1-6)

Ope'n,_DOOT (2 B 6 Pr U(Open _Door V Close DOOT))

or to the notation:

Open_Door (

(1—6) 2-6,9).

Let us continue for Move_Down = true. We have:

94

Design of the real time systems using. ..

Initial formula Set of next-state formulae
(1) = false;

For this manipulation we introduce the notation:
(1 — 6) MOEBo (i),

Analogously we get:

Sto

(1—6) == (nil);
(1 _ 6) Close_Door (ml),

Let us continue the satisfiability analysis of the formulae (2-6,8).
Cousider Move_Up = true. Performing the simplification we have:

Initial formula Set of next-state formulae

2 = O(2),
O(=PrU(Move_Up V Stop)
3 = OB);
4) = O4);
6) = OG);
6) = O(6);
(8) = true
This corresponds to:
(2-6,8) MovesUp (2—6,-PrU(MoveUp V Stop))
that is to:
(2 —6,8) Y577 (2 6,8).

Let us simplify now the set of formulae (2-6,8) for Stop = true. We
have:

95

A .Ursu, V.Dubenetsky, G.Gruita

Initial formula Set of next-state formulae

2 = O(2),

@ = OB);

4 = O);
O(=Pr U Stop V Open_DoorV
Move_Up V Move_Down) (10)

5 = OB);

6 = O(6);

(8) = true

This corresponds to:

(2—6,8) Stog (2—6, (Pr U StopVOpen_DoorV Move_UpV Move_Down))

that is to:
Sto

(2 -6,8) 2% (2 —6,10).
Let us continue for Move_Down = true. We have:

Initial formula Set of next-state formulae
(1) = false;

For this manipulation we introduce like above the notation:
(2 — 6,8) MR ().

Analogously we get:
(2 — 6,8) PR (il);

(2 - 6,8) PR (ni);

The formula manipulations performed in this manner allows us to
obtain a transitive closure of next-state sets of formulae in a finite
number of steps as presented in Table 1. According to [1] that allows
to generate the finite state machine of the specifications (1-7).

96

Design of the real time systems using. ..

The satisfiability analysis tableau

Table 1

Nr Mowve_Up Move_Down
1 2
{1-6} OF=Pru nil
(Move -UpV
Stop))}
2 2-6, (~PrU 02— 06,
(Move_UpV O(=Pru nil
Stop))} (Move UpV
={2-6,8} Stop)) }
3 2-6, (-PrU
(Open_DoorV nil nil
Close_Door))}
— (26,9}
4 {2—-6, (=PrU {02 -6, {O2 - (O,
(Stop V Open_DoorV O(=Pru O(=Pru
Move_UpV (Move UpV | (Move_DownV
Move_Down))} Stop))} Stop))}
= {2 6,10}
5 2-6, (-PrU 02— 0%,
(Move_Down V Stop))} nil O(=Pru
={2-6,11} (Move_DownV
Stop))}
6 2-s [02=0%6, | {02- 08,
(=Prvu OE=PrU OF=Pru
(Open_DoorV (Move_UpV | (Move_DownV
Move_UpV Stop))} Stop))}
Move_Down))}
= {2 - 6,12}

97

A .Ursu, V.Dubenetsky, G.Gruita

Table 1 (continue)

Nr Open_Door Close_Door Stop
3 4 5
O(=Pru nil nil
(Open_DoorV
Close_Door))}
OE=Pru
nil nil (Stop V Open_DoorV
Move_UpV
Move_Down))}
5[{02-06, | 102-0%,
OE=Pru OE=Pru
(Open_DoorV (Open_DoorV nil
Close_Door)))} Move_UpV
Move_Down))}
i (02— 0%, [02- 0%,
OE=Pru OE=Pru
Open_DoorV nil (Stop V Open_DoorV
Close_Door)))} Move_UpV
Move_Down))}
O=Pru
nil nil (Stop V Open_DoorV
Move_UpV
Move_Down))}
O=Pru
Open_DoorV nil nal

Close_Door)))}

98

Design of the real time systems using. ..

3.5 Design of the initial (state-based) automaton

The formula manipulations performed in previous section allows us to
obtain a transitive closure of next-state sets of formulae in a finite
number of steps which according to [1] allows us to generate the state-
based automaton model of the elevator control system as depicted in
Fig.1.

Fig.1. The state-based automaton of the elevator control system

3.6 Design of the action-based automaton of the elevator
control system

To implement the synchronisation part of the elevator control system
it is necessary to invert the state-based automaton into its dual action-
based automaton using a special inversion procedure, as introduced
in [4].

This inversion procedure counsists of the following steps:

- replace each edge of the initial automaton by a node of the dual
automaton keeping for the dual nodes the names of the corre-
sponding edges of the initial automaton;

99

A .Ursu, V.Dubenetsky, G.Gruita

- connect each pair of dual nodes (a,b) by a directed edge named
[l from a to b if the corresponding edges (a,b) of the initial au-
tomaton form a directed chain via the node [.

Some examples of such inversion are represented in [5].

Using this inversion procedure the action-based automaton of the
specifications is obtained as shown in Fig.2.

The action-based automata can be successfully used in the imple-
mentation of elevator control system. The action-based automata are in
the focus of the implementation method proposed in [5]. This method
is an action-oriented method the main idea of which is introduced in [6].

(26,12}

(26,11}

(26,12}

(26,12}

Fig.2. The action-based automaton of elevator control system

3.7 Design of the transition activation conditions of the
action-based automata

To implement the activation conditions of the action-based automata
transitions it is necessary to introduce for each node of the automaton
a propositional variable to indicate the current action which has been
executed in the last moment. This variable takes two logical values.

100

Design of the real time systems using. ..

The true value corresponds to the fact that the action associated to this
node has been executed last time. Then in the general framework of
the execution process a transition between two nodes of the automaton
can be activated if the action associated to the source node has been
executed and the environment accepts this transition.

The verbal expression like “the environment accepts this transition”
should be implemented by a propositional or predicative formula which
have to be introduced by the designer.

To implement the transition activation conditions of the elevator
control system it is necessary to introduce:

e an array of Boolean variables by one for each node of the action-
based automaton to denote the current state of the automaton;

Const
Number_of-actions = 6;
Var
flag: array [0..Number_of-actions—1] of Boolean;

e a predicate at(IN) to denote the current floor the elevator passes;
this predicate is true if the elevator is within the floor NV;

e three predicates Floor(N), Up_Floor(N), Down_Floor(N) to de-
note the state of the internal buttons of the elevator; Floor(N)
is true if the button N is held; Up_Floor(N) is true if there ex-
ists at least one button M, such that M > N which is held;
Down_Floor(N) is true if there exists at least one button M, such
that M > N which is held;

e three predicates Button(N), Up_Button(N), Down_Button(N) to
denote the state of the external buttons of the elevator; Button(N)
is true if the button N is held; Up_Button(N) is true if there
exists at least one button M, such that M > N which is held;
Down_Button(N) is true if there exists at least one button M,
such that M > N which is held;

101

A .Ursu, V.Dubenetsky, G.Gruita

e two propositions Any_Floor and Any_Button to denote if there
exists some requests from internal and external buttons respec-
tively;

e the proposition Open to denote the request from the OPEN but-
ton;

e the constants: Home to denote the initial floor number and Last
to denote the maximal floor number;

e the timer function Time() to return the current time;

the Delay variable to denote the delay time for opened door.

It is important to understand that the array of Boolean variables
introduced above are dedicated to store the information about the en-
vironment like a state vector. This is very important for the correct
implementation of the action-based automata in a structural manner.

Using the introduced variables, predicates, function and constants
the transition activation conditions can be introduced as presented in
Table 2.

3.8 Design of the action activation conditions of the ac-
tion-based automaton

The design of the action activation conditions of the action-based au-
tomaton of the elevator control system can be carried out using the
disjunction of the transition activation conditions for each node of the
action-based automaton.
An action can be executed if the environment allows this execution.
For example, according to Fig. 2 the action 1 : Move_Up can be
executed in the next time if one of the following conditions hold:

e action 0 : Start has been executed and the transition 0 — 1 can
be activated;

e action 1: Move_Up has been executed and the transition 1 — 1
can be activated;

102

Design of the real time systems using. ..

e action 2 : Stop has been executed and the transition 2 — 1 can
be activated;

e action 4 : Close_Door has been executed and the transition 4 —
1 can be activated.

To take into account the state of the environment it is necessary
to introduce for each action a logical function the value of which is
determined by the current state of the environment. If the current
value of this function is true the action can be activated immediately,
otherwise if the value of this function is false the action is kept passive
till its activation function becomes true.

We call such functions activation conditions due to their special
use in system development. To keep the values of this functions it
is preferable to save them in some special variables, called activation
condition variables, which can be introduced in the manner as follows:

Var
condition: array[0.. Number_of-actions-1] of Boolean;

Each activation condition variable condition]i],

1 := 1..Number_of_actions — 1 is associated to one action i : Action
and determines if the action can be executed in the current moment.
The 7 : Action action can be executed if the corresponding variable
condition[i] associated to this action (that is to the corresponding node
of the action-based automaton) has a true value.

Having introduced these variables the main problem now consists
in determining the predicates (logical functions) to be associated to
them. One can suggest different approaches to determine these predi-
cates called also activation conditions. But in order to introduce them
in a systematic way we suggest here to use the transition activation
condition design above which is very suitable for this aim.

Each transition activation condition specifies the state of the en-
vironment when the transition is ready for execution. Thus an action
can be activated when it serves as a sink node for a transition which
has been executed in the last moment. Since a node can serve as a sink

103

A .Ursu, V.Dubenetsky, G.Gruita

Table 2

Transition activation conditions

Transition | Activation condition

0—1 flagl0] A at(N) A (N = Home) N =~ Floor(N)A
—Button(N) A (Up_Floor(N) V Up_Button(N))

0—=5 flagl0] A at(N) A (N = Home) A ((Floor(N)V
Button(N))

1—1 flag[l] A at(N) A =(N = Home) A = Floor(N)A
—Button(N) A (Up_Floor(N) V Up_Button(N))

1—2 flag[l] A at(N) A (N = Last V Floor(N) V Button(N))

21 flag[2] A at(N) A =Floor(N) A ~Button(N)A
(Up_Floor(N) V Up_Button(N))

22 flag[2] A at(N) A = Any_Floor A = Any_Button

2—3 flag2] A at(N) A =Floor(N) N ~Button(N)A
(Down_Floor(N) V Down_Button(N))A
—(Up_Floor(N) V Up_Button(N))

2—5 flag[2] A at(N) A (Floor(N) V Button(N))

3—2 flag[3] AN at(N) A (N = Home) V (Floor(N)V
Button(N))

3—3 flag[3] A at(N) A =Floor(N) N ~Button(N)A
(Down_Floor(N) V Down_Button(N))

4—1 flag[4] A at(N) A =Floor(N) A ~Button(N)A
(Up_Floor(N) V Up_Button(N))

4—3 flag[4] A at(N) A =Floor(N) N ~Button(N)A
(Down_Floor(N) V Down_Button(N))A
—(Up_Floor(N) V Up_Button(N))

4—=5 flag[4] A at(N) A (Floor(N) V Button(N))

5—4 flag[5] A at(N) A =(Timer() < Delay)

5—5 flag[5] A at(N) A (Timer() < Delay) A Open

104

Design of the real time systems using. ..

node for a lot of transitions simultaneously, the activation condition
associated to this node should be represented by the disjunction of the
activation conditions of all the transitions incident to this node.

Using this idea the activation conditions for all the actions of the
action-based automaton of the elevator control system can be intro-
duced as follows in Table 3.

Table 3

Actions activation conditions

Actions Transitions | Activation conditions
condition|0] flag|0]
condition[1] 0—=1 (flag[0] A at(N) A (N = Home)A
—Floor(N) A =Button(N)A
(Up_Floor(N) VvV Up_Button(N)))V
1—1 (flag[1]) A at(N) A =(N = Home)A
—Floor(N) N ~Button(N)A
(Up_Floor(N) Vv Up_Button(N)))V
21 (flag[2]) A at(N) A =Floor(N)A
—Button(N)A
(Up_Floor(N) VvV Up_Button(N)))V
4—=1 (flag[4] A at(N) A =Floor(N)A

—Button(N)A
(Up_Floor(N) VvV Up_Button(N)))
condition|2] 1—2 (flag[l] A at(N) A (N = LastV

Floor(N) V Button(N)))V

22 (flag[2] A at(N)A

—Any_Floor N —Any_Button)V
3—2 (flag[3]) A at(N) A (N = Home)V
Floor(N) V Button(N)))
condition[3] 23 (flag[2]) A at(N) A =Floor(N)A
—Button(N) A (Down_Floor(N)V
Down_Button(N))A

105

A .Ursu, V.Dubenetsky, G.Gruita

Actions Transitions | Activation conditions
—(Up_Floor(N) Vv Up_Bottom(N)))V
3—3 (flag[3] A at(N) A =Floor(N)A
—Button(N) A ((Down_Floor(N)V
Down_Button(N)))V
43 (flag[4] A at(N) A =Floor(N)A
—Button(N) A (Down_Floor(N)V
Down_Button(N))A
—(Up_Floor(N) Vv Up_Bottom(N)))
condition[4] 5—4 flag[b] A at(N)A
—(Timer() < Delay)
condition[5] 0—=5 (flag[0] A at(N) A (N = Home)A
((Floor(N) V Button(N)))V
2—5 (flag[2] A at(N)A
(Floor(N) V Button(N)))V
45 (flag[4] A at(N)A
(Floor(N) V Button(N)))V
5—5 (flag[5] A at(N)A
(

Timer() < Delay) A Open)

3.9 Design of the control structure of the system driver

Using the action activation conditions the control structure of the el-
evator control system can be designed. The control structure can be
represented as a loop structure nesting a set of if statements. Each if

statement tests a condition[i] condition.

If the condition is true the corresponding action of the elevator
control system is executed. If the condition[i] formulae are built up
correctly only one condition[i] expression must by true at a time. Thus

the control structure may be represented as follows:

Begin

While true do

if condition[0] then Start();
if condition[1] then Move_Up();

if condition[2] then Stop();

106

Design of the real time systems using. ..

if condition[3] then Move_Down();
if condition[4] then Close_Door();
if condition[5] then Open_Door();
end;
end;

This structure represents the driver of the elevator control system.
The driver is dedicated to manage the execution of the elevator system
actions.

3.10 Design of the functional structure of the elevator
control system

The functional structure of the elevator control system is dedicated to
develop the general functional architecture of the designed system. The
functional model of a system is required to structure the implementa-
tion of the system actions and of the system driver. To represent these
models some key constructions of the specification language IKARS
are used [6].

The upper level of the functional model of the elevator control sys-
tem can be represented in the framework of the IKARS language as
follows:

System Elevator

OWN
Action Do_Start(),
Action Do_Move_Up(),
Action Do_Stop(),
Action Do_Move_Down(),
Action Do_Close_Door(),
Action Do_Open_Door()

End OWN:

Action Do_Start()
OWN

107

A .Ursu, V.Dubenetsky, G.Gruita

Action Start(),
Action Update_Flags_Start()
End OWN
End Do_Start,

Action Do_Move_Up()
OWN
Action Move_Up(),
Action Update_Flags-Move_Up()
End OWN
End Do_Move_Up;

<the functional specifications of the actions Do_Stop(), Do_Move_Down()
and Do_Close_Door() are omitted>

Action Do_Open_Door()
OWN
Action Do_Open_Door(),
Action Update_Flags-Open_Door()
End OWN
End Do_Open_Door;
End Elevator.

Each action in the specification like Do_Action() corresponds to
an action like Action() but differs from it by the fact that the action
Do_Action() is a compound action consisting of the Action() action and
of the Update_Flags_Action(). Each flag updating action is dedicated

108

Design of the real time systems using. ..

to set and reset the action flags so that the actions will be executed
according to the partial order defined by the action based automa-
ton (Fig.2). That is a Do_Action() action consists of two subactions:
Action() which is the action itself, and the flag updating action Up-
date_flags_Action(). The action Update_flags_Action() is dedicated to
change the action flag values after each action execution to modify
properly the state of the environment. As mentioned above the infor-
mation about the environment like a state vector is very important for
the correct implementation of the action-based automata.

According to the functional model the new compound actions have
been introduced. That is why the control structure introduced above
must be rewritten now as:

Begin
While true do
if condition[0] then Do_Start();
if condition[1] then Do_Move_Up();
if condition[2] then Do_Stop();
if condition[3] then Do_Move_Down();
if condition[4] then Do_Close_Door();
if condition[5] then Do_Open_Door();
end;
end;

3.11 Implementation of the elevator system actions and
of the system control driver

To implement the actions of the functional model of the elevator system
actions we introduce for each action Do_Action() a procedure. In a
Pascal-like manner this procedure can be written as follows:

Procedure Do_Action();
Const action_number =<the action name>

Procedure Action();

109

A .Ursu, V.Dubenetsky, G.Gruita

Begin
<application based implementation of the Action() action>
End;

Procedure Update_flags_Action();
Var
1: integer;
Begin
for i:= 0 to Number_of_actions-1 do
flag[i]:=false;
flag [action_number]:=true;

End,

Begin
Action();
Update_flags_Action();
End,

This is only the skeleton of the Do_Action() implementation.

The elevator control system actions can be implemented in this way.
It is strongly recommended to implement these actions as procedures
in a library unit.

Unit Elevator_Actions;

Procedure Do_Start();
Const action_number =0

Procedure Start();
Begin
<application based implementation of the Start() action>
End;

Procedure Update_flags_Start();
Var

1: integer;

110

Design of the real time systems using. ..

Begin
for i:= 0 to Number_of-actions-1 do
flagli]:=false;
flag [action_number|:=true;
End;

Begin
Action();
Update_flags_Start();
End,

<the implementation of the actions Do_Move_Up(), Do_Stop(),
Do_Move_Down() and Do_Close_Door() are omitted>

Procedure Do_Open_Door();
Const action_number = 5

Procedure Open_Door();
Begin
<application based implementation of the Open_Door() action>
End;

Procedure Update_flags-Open_Door();

Var
1: integer;

Begin
for i:= 0 to Number_of-actions-1 do

flag[i]:=false;

flag[action_number]:=true;

End;

Begin

Action();
Update_flags-Open_Door();

111

A .Ursu, V.Dubenetsky, G.Gruita

End,
end;

The unit introduced above can be used in the implementation of
the elevator control system driver.

Program Elevator_Driver;

uses FElevator_Actions;

Const
Number_of_actions = 6;

Var
flag: array [0..Number_of-actions-1] of Boolean;
condition:array[0.. Number_of_actions-1] of Boolean;

Begin
Init_flags;
While true do
Begin
Update_conditions;
if condition[0] then Do_Start();
if condition[1] then Do_Move_Up();
if condition[2] then Do_Stop();
if condition[3] then Do_Move_Down();
if condition[4] then Do_Close_Door();
if condition[5] then Do_Open_Door();
end;
end.

4 Conclusions
Temporal logic formalism has proved its applicability in specification

and design of distributed and concurrent systems. Some practical re-
sults in this area the reader can find in [1,2,5,7,8].

112

Design of the real time systems using. ..

However all known applications of temporal logic in distributed

system design deal mainly with the general framework of the design
process.

The case study of the elevator control system shows how the pre-

sented method can be used in the design of real time system. This
case study completes the picture of the methods introduced in [5,6]
and covers all the design steps: from temporal logic specifications to
the implementation of the system code.

References

[1]

2]

[3]

Z.Manna, P.Wolper. Synthesis of Communicating processes from
temporal logic specifications, ACM TOPLAS, 6, 1984, pp.68-93.

A Pnueli. Applications of Temporal Logic to the Specification and
Verification of reactive systems: a survey of current trends, in:
LNCS 224, 1986, pp.510-584.

E.M.Clarke, E.A.Emerson. Design and synthesis of synchronisa-
tion skeletons using Branching Time Temporal logic, in: Proc.
Workshop on Logics of Programs, LNCS, Vol. 131, 1981, pp.52—
71.

A.Ursu, S.Zaporojan. Design of the Action-based Automata of the
Distributed Systems Protocols on the basis of Temporal Logic
Specifications, in: Proceedings of the 5th Symposium on Auto-
matic Control and Computer Science 1995, October 21-27, 1995,
Tasi, Romania, Vol.1, pp.423-428.

G.C.Gruita. Design and validation of a simplified communication
protocol using temporal logic specifications, License Diploma The-

sis, UTM, Chisinau, Moldova, 1995.

IKARS, The work group report, Electrotechnical University,
Sankt-Petersburg, Russia, 1990.

113

A .Ursu, V.Dubenetsky, G.Gruita

[7] A.Ursu, V.Dubenetsky, V.Besliu. Development and application
of temporal logic specifications in distributed systems design, in:
Proceedings of the 9th Romanian Symposium on Computer Sci-
ence ROSYCS’93, November 12-13, 1993, Iasi, Romania, pp.526—
544.

[8] A.Ursu, V.Besliu, S.Zaporojan, V.Dubenetsky. Design and analy-
sis of temporal logic specifications of distributed systems commu-
nication protocols, in: Proceedings of the International Confer-
ence on Technical Informatics ConTT’94, November, 16-19, 1994,
Timisoara, Romania, Vol.4, pp.1-10.

A Ursu, G.Gruita, Received 3 January, 1996
Information Technology Department,

Technical University of Moldova,

Stefan cel Mare 168,

2012, Chisinau, Republic of Moldova,

phone: (+373-2) 497018, 497014;

fax: (+373-2) 247114

V.Dubenetsky

Information processing and control systems Department,
State electrotechnical University of Sankt-Petersburg,
str.Popov, 5,

197022, Sankt-Petersburg, Russia,

phone: (+842) 2347321

114

