
Technical-Scientific Conference of Undergraduate, Master and Phd Students

Chisinau, 23-25 March 2021, Vol. I

169

ROAD MARKUP DOMAIN SPECIFIC LANGUAGE

Maxim NICHIFOROV1, Ion ȚURCANU1, Nicolae BASSO1*, Marinela BRÂNZAEANU1,

Nichita SOROCHIN1

1 Technical University of Moldova, Faculty of Computers, Informatics and Microelectronics, Software Engineering,

Group FAF-191, Chișinău, Republic of Moldova

*Corresponding author: Nicolae Basso, basso.nicolae@isa.utm.md

Abstract: This article describes a Domain Specific Language for helping to create a road marking

plan. Subsequent, this paper has the purpose of explaining that by creating a domain-specific

language (DSL) which is being focused on a certain task, some of the previous actions will become

automatized and will consume much less time to be implemented. Further, this material clarifies

how the DSL will work, what are its base functionalities and how it is built.

Key words: road, markings, domain-specific language, grammar, parse tree.

Introduction
A domain-specific language (DSL) is a high-level software implementation language that

supports concepts and abstractions that are related to a particular (application) domain [1]. The

effort needed by an end-user to rapidly write correct programs using the produced DSL is the main

factor that causes them to be so popular and widely implemented [2]. Traffic rules are a major

safety factor that require all the humans to be in charge of. Sometimes they are well determined

and intuitive but there are times when they are confused and not obvious at first sight. This is why

an idea for constructing a language that can intuitively help mark roads and set the priorities into

an intersection has appeared. Our DSL’s main purpose is to make some base functions for planning

the traffic rules on the streets. These functions may potentially be used by AI autopilot to predict

markings and set of rules where the road does not have them at all or by traffic police to ease their

work [3]. It is considered, that by dint of this kind of language, it will be easier for road builders

and designers to do their work, and in the same way, this will increase quality and speed of projects

implementation in future. Most of the road-marking job is routine, that can be automated and

people doing it can shift the responsibility about trivial things on computers. Thereby, in further

workers will focus on other more important things, which can be missed during the routine

implementation. In addition, the DSL can be standardized, thus, the projects implemented with it

will be in one general standard, and these projects can be easily saved, stored and transmitted to

everybody who needs it.

Reference grammar
Road Markup DSL grammar’s definition:

L(G) = (S, P, VN, VT), where:

 S – start symbol;

 P – finite set of production of rules;

 VN – finite set of non-terminal symbols;

 VT – finite set of terminal symbols.

S = {<program>}

VN = {<program>, <statement>, <createElement>, <invokeProcedure>, <createRoad>,

<createIntersection>, <createSign>, <finalize>, <setter>, <draw>, <autoMarkup>, <setter>,

<dimensional>, <restrictional>, <setWidth>, <setLength>, <setCrossingAngle>,

<setLongtitudinalMarking>, <setPriority>, <setIntersectionType>, <setMovementType>,

<createRoad>, <createIntersection>, <createSign> }

mailto:basso.nicolae@isa.utm.md

Technical-Scientific Conference of Undergraduate, Master and Phd Students

Chisinau, 23-25 March 2021, Vol. I

170

 VT = {A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, a, b, c,

d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 , {, }, (,) , +, =, ;,

_ ,\n, \t, <SET_WIDTH>, <SET_LENGTH>, <SET_CROSSING_ANGLE>,

<SET_PRIORITY>, <SET_INTERSECTION_TYPE>, <SET_MOVEMENT_TYPE>,

<DRAW>, <AUTO_MARKUP>, <ROAD>, <INTERSECTION>, <SIGN>, <NEWLINE>,

<STMTEND>, <INTERSECTION>, <SIGN>, <INT>,<LOWERCASE>, <UPPERCASE>,

<DIGIT>, <LETTER>, <CHAR>, <WORD>, <WHITESPACE>, <TEXT>, <VARNAME>,

<ROAD_NAME>, <INTERSECTION_NAME>, <SIGN_NAME>, <SEMICOLOR>,

<MARKING_TYPE>, <MOVEMENT_TYPE>, <INTERSECTION_TYPE>, <PRIORITY> }

P = { <program> → <statement> <(STMTEND)+>

<statement> → < createElement > | < invokeProcedure >

<createElement> → < createRoad > | < createIntersection > | < createSign >

<invokeProcedure> → <finalize> | <setter>

<finalize> → <draw> | <autoMarkup>

 <setter> → <dimensional> | <restrictional>

 <dimensional> → <setWidth> | <setLength> | <setCrossingAngle>

 <restrictional> → <setLongtitudinalMarking> | <setPriority> |

<setIntersectionType> | <setMovementType>

 <createRoad> → <ROAD>

<createIntersection> → <INTERSECTION>

<createSign> → <SIGN> }

The full example of the grammar and production rules is in references [4].

Semantics and semantic rules
Semantic rules come as an addition above the language rules, which are going to check the

code user provides our DSL with for logical integrity.

Data types
There are 3 main data types in the “Road Construction” DSL, which are:

 ROAD;

 INTERSECTION;

 SIGN;

“ROAD” responds for roads, “INTERSECTION” for intersection, and “SIGN” for all types

of road signs.

Lexical analysis

Lexical analysis is the first phase of a compiler. It takes the modified source code from

language preprocessors that are written in the form of sentences. The lexical analyzer breaks these

syntaxes into a series of tokens, by removing any whitespace or comments in the source code [5].

Basic control structures
Our core control structure is built using top-down or tree flow: complex expressions are

decomposed and, thus, simplified till they reach the “atomic” logical size.

Example of script and parsed tree

ROAD Stefan;

ROAD Caragiale;

INTERSECTION Stefan-Caragiale;

SetPriority(Stefan, Stefan-Caragiale, Main);

AutoMarkup();

Draw();

Technical-Scientific Conference of Undergraduate, Master and Phd Students

Chisinau, 23-25 March 2021, Vol. I

171

(A fuller, more expressible parse tree and script sample can be found at [6,7])

Figure 1. Parse tree

Specifications of DSL

The main functionalities of the DSL are:

 Creating elements such as: Road, Intersection and Sign.

 Automated road and markup properties’ generation.

 Drawing given project.

 Setting properties of the objects (such, as length, width or priority (for roads)).

Conclusion
The purpose of this paper is to show the concept of the DSL directed to make road marking

easier. In addition, this DSL can help with digitalization of the road marking projects, so they can

be built, stored and transmitted with certain and global standard, which can be used by every user

having and computer and knowing this DSL syntax. Our team was making researches in this

domain to understand with what kind of problems face people that are involved in process of

designing the road marking and we tried to generate intuitive language than will not require

thorough and deep learning and can be easily read and written.

In general, the domain of urbanistic is wide field of activity and there is much work to do

about automation despite it is not popular about creating certain software for it. We think that this

language can be great start for developing software in this domain in a more global context than it

is at this moment.

References:

1. VISSER, E. WebDSL: A Case Study in Domain-Specific Language Engineering. In: R.

Laemmel, J. Saraiva, and J. Visser, editors, Generative and Transformational Techniques

in Software Engineering (GTTSE 2007) Volume 5235 of Lecture Notes in Computer Science,

p.2.

2. KOSAR., PABLO E. A preliminary study on various implementation approaches of domain-

specific language. In: Information and Software Technology, Volume 50, Issue 5, April

2008, p.390.

3. PAUL K., JURGEN V. A Domain Specific Language for Source Code Analysis and

Manipulation. In: ACM SIGPLAN Notices 25(6), June 2000, pp.26-36.

4. Grammar in .g4 format, https://bitbucket.org/pbl-elsd/road-language/src/dev/ANTLR/src/

ANTLR -grammars/RoadConstruction.g4

5. Lexer, https://bitbucket.org/pbl-elsd/road-

language/src/dev/ANTLR/src/base/gen/RoadConstruction/RoadConstructionLexer.java

6. GitBucket reporitory of the project: DSL Script Sample, https://bitbucket.org/pbl-

elsd/road-language/src/dev/ANTLR/src/tmp/ScriptExample.txt

7. A fuller parse tree example, https://bitbucket.org/pbl-elsd/road-

language/raw/91bebfc9cb22559b91164fd4655dff550b706cb6/ANTLR/gen/images/parseTre

e.png

http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2008-023.pdf
http://www.di.uminho.pt/GTTSE2007
http://www.di.uminho.pt/GTTSE2007
https://bitbucket.org/pbl-elsd/road-language/src/dev/ANTLR/src/ANTLR-grammars/RoadConstruction.g4
https://bitbucket.org/pbl-elsd/road-language/src/dev/ANTLR/src/base/gen/RoadConstruction/RoadConstructionLexer.java
https://bitbucket.org/pbl-elsd/road-language/src/dev/ANTLR/src/tmp/ScriptExample.txt
https://bitbucket.org/pbl-elsd/road-language/raw/91bebfc9cb22559b91164fd4655dff550b706cb6/ANTLR/gen/images/parseTree.png
https://bitbucket.org/pbl-elsd/road-language/raw/91bebfc9cb22559b91164fd4655dff550b706cb6/ANTLR/gen/images/parseTree.png
https://bitbucket.org/pbl-elsd/road-language/raw/91bebfc9cb22559b91164fd4655dff550b706cb6/ANTLR/gen/images/parseTree.png
https://bitbucket.org/pbl-elsd/road-language/raw/91bebfc9cb22559b91164fd4655dff550b706cb6/ANTLR/gen/images/parseTree.png

