
Technical-Scientific Conference of Undergraduate, Master and Phd Students

Chisinau, 23-25 March 2021, Vol. I

363

THE DEVELOPMENT OF A DOMAIN SPECIFIC LANGUAGE FOR

EMAIL SORTING

Andy-Constantin CIOBANU1, Cristian Cătălin MIRON1, Dumitru STRELEȚ1,

Radu-Vasile ARAMĂ1, Andreea BÎRSAN1*

1 Technical University of Moldova, Faculty of Computers, Informatics and Microelectronics, Department of

Software Engineering and Automation, Group FAF-193, Chisinau, Republic of Moldova

*Corresponding author: Bîrsan Andreea, birsan.andreea@isa.utm.md

Abstract: The goal of domain-specific languages (DSLs) is to increase the productivity of software

engineers by abstracting from low-level boilerplate code. Introduction of DSLs in the software

development process requires a smooth workflow for the production of DSLs themselves. This

paper discusses the implementation of a user-friendly DSL intended to work as an email querying

method. On further research about this topic, we tackle the problem that the domain specific

languages solve, the type of data that is going to be processed, the computational model and its

grammar design.

Key words: DSL, BNF, parse tree, grammar, email.

Introduction

Abstraction is the key to progress in software engineering. By encapsulating knowledge

about low level operations in higher-level abstractions, software developers can think in terms of

the higher-level concepts and save the effort of composing the lower-level operations.

Conventional abstraction mechanisms of general-purpose programming languages such as

methods and classes, are no longer sufficient for creating new abstraction layers [2]. The design

and use of appropriate DSLs are a key part of domain engineering, by using a language suitable to

the domain at hand – this may consist of using an existing DSL or GPL, or developing a new DSL.

Creating a domain-specific language, rather than reusing an existing language, can be worthwhile

if the language allows a particular type of problem or solution to be expressed more clearly than

an existing language would allow and the type of problem in question reappears sufficiently often.

Domain analysis
The project centers around email management and sorting, as it can have a lot of versatility

in the way that it can be of use. This domain encompasses a wide range of utility varying from

personal to more business-oriented purposes. Depending on the service that is being used, certain

features might not be consistent over the entire scope of the email services, particularly regarding

the sorting options of one’s emails. Thus, through implementing a DSL that is going to serve a

similar purpose for emails as what the structured query language does to databases, it is a

possibility to make it easy and efficient to manage the messages that are being received through

these particular platforms by using various focal classifications.

Language overview
The basic computation that the proposed DSL performs consists of querying large data,

emails in this case, abstracting from the general-purpose language that involves knowledge of

programming principles and, at the same time, methods of data parsing. It will filter and sort data

based on a given configuration file, given an input or a source database. The DSL will hide the

logic of querying data giving the user the possibility to ask for a collection of data in a form of a

language, rather than developing a whole application. As far as the computational model, the

language uses the declarative model which is specific to the domain of querying or gaining data.

mailto:birsan.andreea@isa.utm.md

Technical-Scientific Conference of Undergraduate, Master and Phd Students

Chisinau, 23-25 March 2021, Vol. I

364

The main data structure is the email, as an abstract data structure. By being a representation of the

declarative model of programming, the DSL does not include an explicit data declaration that will

affect the computation of the main program.

The DSL supports only sequential Control Structure due to the fact that the language is just

a set of predefined rules with a limited type of input for each rule. The rules can be defined as a

set of flags in execution of a script. Every email is stored in the same way and has approximately

the same structured data columns, like body, subject, folder, time when was received and when

was read etc. Due to this situation, it would be a bad choice to write any selectional and/or

repetitional control structures (especially in the first versions of the language), because it would

considerably raise the complexity and difficulty of the language that is pointed only to find and

extract emails by a set of rules. The DSL control structure is very similar to BASH scripts like

grep or find, where user input is limited on predefined set of rules. As it can be seen in Fig.1, rules

are not linked to each other, and each rule is optional (if no rule at all (email {}) then blank output.

Figure 1. Control flow chart

A potential program written using the proposed DSL will require as an input a collection

of records, most probably in JSON format or XML, which are the emails on which the operations

will be performed. The records will be received from a database and they must have specific fields

and properties to be processed by the program. As an output, the program will return the filtered

or processed records, depending on the client’s specification.

 Grammar design

When describing languages, Backus-Naur form (BNF) is a formal notation for encoding

grammars intended for human consumption [3]. Many programming languages, protocols or

formats have a BNF description in their specification, Tab. 1.

BNF Representation of the EQL grammar:
Table 1

Meta Notations

<foo>

foo
[x]

x∗

x+,

{ }

|

VT

VN

P

means foo is a nonterminal.

(in bold font) means that foo is a terminal i.e., a token or a part of a token.

means zero or one occurrence of x, i.e., x is optional; note that brackets in quotes ′ [′ ′]′ are terminals.

means zero or more occurrences of x.

a comma-separated list of one or more x’s.

large braces are used for grouping; note that braces in quotes ′ {′ ′ }′ are terminals.

separates alternatives.

terminal symbols.

non-terminal symbols.

productions - rules of the grammar.

Technical-Scientific Conference of Undergraduate, Master and Phd Students

Chisinau, 23-25 March 2021, Vol. I

365

VT = {email, {, }, time:, subject:, sortby:, folder:, to:, from:, cc:, forwarded:, read:, body:,
attachments:, TIME, NAME, YES, NO, .., „, ASC, DESC, y, d, -, @., *}

VN = {<filter>, <destination>, <time>, <subject>, <property>, <content>, <sorting>, <folder>,
<to>, <from>, <cc>, <datevalue>, <subjectvalue>, <forwarded>, <read>, <body>, <attachments>,
<sortingvalue>, <foldervalue>, <destinationvalue>, <attachementsvalue>, <bodyvalue>, <boolvalue>,
<date>, <star>, <day>, <year>, <wordlist>, <word> , <string>, <sortvalue>, <email>, <fextension>,
<file>, <digit>, <interval>, <letter>, <date_digit>, <date_day>, <date_month>, <date_year>}

P={
<query> → email {<filter>∗ | <star>}
<filter> → <destination> | <time> | <subject> | <property> | <content> | <sorting> | <folder>
<destination> → <to> | <from> | <cc>
<time> → time: <datevalue>
<subject> → subject: <subjectvalue>
<property> → <forwarded>| <read>
<content> → <body> | <attachments>
<sorting> → sortby: <sortingvalue>
<folder> → folder: <foldervalue>
<to> → to: <destinationvalue>
<from> → from: <destinationvalue>
<cc> → cc: <destinationvalue>
<forwarded> → forwarded: <boolvalue>
<read> → read: <boolvalue>
<body> → body: <bodyvalue>
<attachments> → attachments: <attachementsvalue>
<datevalue> → <date><star><date> | <date><star> | <star><date> | <star><day> | <day><star>

| <star><year> | <year><star>
<subjectvalue> → <wordlist> | <word> | <string>

<sortingvalue> → <parameter> <sortvalue>
<paramater> → TIME | NAME

<foldervalue> → <string>

<destinationvalue> → <wordlist> | <word> | <string> | <email> | <star>

<bodyvalue> → <wordlist> | <word> | <string>

<attachementsvalue>→ <boolvalue>| <word> | <fextension> | <file> | <digit> | <interval>

<wordlist> → <word>+

<year> → <date_digit>+ y
<day> → <date_digit>+ d
<sortvalue> → ASC | DESC
<boolvalue> → YES | NO
<date> → <date_day> - <date_month> - <date_year>
<email> → <word> @. <word> . <word>
<word> → <letter>+
<fextension> → <star> . <word>

<file> → <word> . <word>
<interval> → <digit> .. <digit>
<digit> → 0 | 1 | 2 | ... | 9
<digit_date> → 1 | 2 | ... | 9
<string> → „ <letter>* ”

<letter> → a | b | ... | z | A | B | ... | Z |
<date_day> → 1 | 2 | ... | 31
<date_month> → 1 | 2 | ... | 12
<date_year> → 1950 | 1951 | ... | 2100<star> → *}

Technical-Scientific Conference of Undergraduate, Master and Phd Students

Chisinau, 23-25 March 2021, Vol. I

366

Example of program:

email {

 to: arama.radu@gmail.com

 time: 23-09-2021

 subject: laboratory

 read: yes

 folder: "university"

}

For the given piece of code we obtained the next Parse Tree, Fig. 2.

Figure 2. Parser tree

Conclusion and future works

Domain-specific languages (DSLs) are languages tailored to a specific application domain.

They have many potential advantages in terms of software engineering, ranging from increased

productivity to the application of formal methods. This paper introduces a new DSL concept,

which is centered around email querying and its goal is to represent an easily sizeable solution for

the end-user. After implementing the language by deconstructing every important element of a

DSL, it is essential to consider in the future how intuitive it might be for the end-user, along with

making it more specific by adding new variables depending on what works best for the domain

that was chosen.

References

1. LÄMMEL, Ralf & VISSER, Joost & SARAIVA, João. (2008). Generative and

Transformational Techniques in Software Engineering II, International Summer School,

GTTSE 2007, Braga, Portugal, July 2-7, 2007.

2. Tomaž KOSAR, Sudev BOHRA, Marjan MERNIK, Domain-Specific Languages: A

Systematic Mapping Study, Information and Software Technology, Volume 71, 2016.

3. MERNIK, Marjan & HEERING, Jan & SLOANE, Anthony. When and How to Develop

Domain-Specific Languages. ACM Comput. Surv.. 37. 316-. 10.1145/1118890.1118892,

2005.

