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        Abstract: Each year, during 5 last years, authors organized the National Technical Olympiad in 

Informatics at Technical University of Moldova for high school students by proposing for solving different 
Olympiad problems. Some of these problems needed for their solution algorithm of dynamic 
programming [1, 2]. In this paper the solutions of two problems taken from site ACM.TIMUS.RU  for 
Olympiad held in 2012 have been considered and codes of corresponding programs in C language have 
been presented. 
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1. Conditions of the problems (http://acm.timus.ru)   

The first problem: 1005. Stone Pile.  

        You have a number of stones with known weights w1, …, wn (1≤n≤20 and, 1 ≤ wi ≤ 100000). 

Write a program that will rearrange the stones into two piles such that weight difference between the 

piles is minimal. 

        The second problem: 1009. K-based Numbers. 

        Let‘s consider K-based numbers, containing exactly N digits. We define a number to be valid if its 

K-based notation doesn‘t contain two successive zeros. For example: 

* 1010230 is a valid 7-digit number; 

* 1000198 is not a valid number; 

* 0001235 is not a 7-digit number, it is a 4-digit number.  

         Given two numbers N and K, you are to calculate an amount of valid K based numbers, containing 

N digits. You may assume that 2 ≤ K ≤ 10; N ≥ 2; N + K ≤ 18. 

2. Solutions of the problems 

Dynamic programming is a method for solving complex problems by breaking them down into simpler 

subproblems. In [1, 2] the good introduction in dynamic programming is given. In general, to solve a 

problem, we need to solve different parts of the problem (subproblems), and then combine the solutions 

of the subproblems to reach an overall solution. 

 The first problem (Stone pile) - is an important problem in the theory of algorithms and 

cryptography. The problem is NP-complete and can also be regarded as a certain special case of the 

knapsack problem. The computational complexity of the problem depends on two parameters - the 

number n of elements of the set, and weights of the stones w1, …, wn. As n is small, the exhaustive 

search is acceptable. But the weights of the stones w1, …, wn are also small, and because of that  it is 

better to use dynamic programming. At first we find the sum of weights of all the stones w1+ …+ 

wn=W. Then we reduce this problem to a 0-1 knapsack problem - determine the number of each item to 

include in a collection so that the total weight is less than or equal to a given limit = W/2 and the total 

value is as large as possible – assuming that weight is equal to a value. Then for each w ≤ W/2, define 

m[w] to be the maximum value that can be attained with total weight less than or equal to w. Then 

m[W/2] is the solution to the problem. 

        Observe that m[w] has the following properties: 

 

m[0]=0 (the sum of zero items, i.e., the summation of the empty set); 

m[w]= max(wi+m[w-wi] : wi<=W/2). 

        The idea used is that the solution for a knapsack is the same as the value of one correct item plus the 

solution for a knapsack with smaller capacity, specifically one with the capacity reduced by the weight of 

that chosen item. Here the maximum of the empty set is taken to be zero. Tabulating the results from 

m[0] up through m[W/2] gives the solution. Since the calculation of each m[w] involves examining n 
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items, and there are W/2 values of m[w] to calculate, the running time of the dynamic programming 

solution is O(nW).  

 
      The accepted cod in C language is 
presented below: 
#include<stdio.h> 
#include<math.h> 
#define M 20000002 
int m[M]={1}; 
int main() 
{ 
 int n,i,w, wi[21]={0},W=0; 
  scanf("%d",&n); 
 for(i=1;i<=n;i++)   
             { 
  scanf("%d",&wi[i]); 
  W+=wi[i]; 
 } 
 for(i=1;i<=n;i++) 
  for(w=W/2;w;w--) 
  if(w>=wi[i] && m[w-wi[i]]) 
   m[w]=1; 
 w=W/2; 
 while(m[w]==0) w--; 
 printf("%d",W-w*2); 
 return 0; 
} 
     It is interesting that due to a very 
simple restriction for n (1 ≤ n ≤ 20)  we 
can solve this problem with brute force 
without using dynamic programming. The 
accepted cod is presented below: 
#include<stdio.h> 
#include<math.h> 
int main( ) 
{ 
    long 
a[20],s=0,s1,t=1l,j=0,min=2000000000; 
 int n,i; 
 scanf("%d",&n); 
 for(i=0;i<n;i++) 
             { 
  scanf("%ld",&a[i]); 
  s+=a[i]; 
 } 
 t<<=n; 
 for(j=0;j<t;j++) 
            { 
  s1=0; 
  for(i=0;i<n;i++) 
    if(j&(1<<i)) s1+=a[i]; 
    if(labs(s-2*s1)<min) min=labs(s-
2*s1); 
 } 
 printf("%ld",min); 
          return 0; 
} 
     The second problem (K-based 
Numbers) is more complicated. The 
solution approached the construction of N 
digit numbers from N-1 digit numbers in 
the typical way of constructing numbers: 
multiply N-1 digit number by base K, and 
add the new digits to the units‘ position. 
We can be sure that we're not missing any 

numbers.   We must consider numbers that 
end in zero separately from those that 
don't.  
      Let Z(n) - number of valid numbers 
ending in zero and NZ(n) - number of 
valid numbers not ending in zero. It is 
evident that Z(2) = k – 1 and NZ(2) = (k - 
1) * k - (k - 1)   (total number of valid 2-
digit numbers, minus those that end in 0). 
Then we have the recurrence formulae:  
       Z(n) = NZ(n - 1), 
       NZ(n) = (Z(n-1) + NZ(n-1)) * (k - 1).  
     Compute Z(n) and NZ(n) iteratively  
and then output F(n) at the end F(n) = Z(n) 
+ NZ(n). 
      The accepted cod of this problem is 
presented below. In this cod the 
recurrence: 
         F(n)=(N-1)*(F(n-1)+F(n-2)),  
have been used. 
#include<stdio.h> 
 
long a[20]={1}; 
 
int k; 
 
long rec(int x) 
{ 
        if(a[x]) 
           return a[x]; 
        else  
           return a[x]=(k-1)*(rec(x-1)+rec(x-
2)); 
} 
int main() 
{ 
 int n; 
 scanf("%d%d",&n,&k); 
 a[1]=k-1; 
 rec(n); 
 printf("%ld",rec(n)); 
             return 0; 
} 
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