

G. Colibaba¹, V. Fedorov², D. Rusnac¹, D. Grabco³, E. Monaico⁴, P. Petrenco³, C. Rotaru¹

¹ Moldova State University, Chisinau, Republic of Moldova

Poster session 2

- ²Institute of Electronic Engineering and Nanotechnologies, Chisinau, Republic of Moldova
- ³ Institute of Applied Physics, Chisinau, Republic of Moldova
- ⁴Technical University of Moldova, Chisinau, Republic of Moldova

Title: Manufacturing highly conductive ceramic targets and thin films of ZnO

Abstract

The present investigation addresses a novel approach for sintering ZnO ceramics by means of chemical vapor transport (CVT) using compound transport agents. The typical size of obtained ZnO ceramics was 25 mm in diameter and 1 mm thickness. The sintering ZnO ceramics at the use of $\rm HCl+H_2+C$, is the most perspective and effective method, which has the following advantages: the low sintering temperature of 1070 °C, 99% of the initial diameter, 80% of single crystal hardness, 90-95% of ZnO density, the low resistivity of 0.025 W×cm, free from powder pressing, free from attachment effect and contamination.

ZnO targets with resistivity of 2×10^{-3} W×cm, additionally doped by donor impurities, can be successfully sintered at low temperatures. ZnO thin films (~400 nm), obtained by DC magnetron sputtering, have the following parameters: the optical transparency is about 90% in the visible range, resistivity of 4×10^{-4} W×cm, free electron concentration of 3×10^{21} cm⁻³, and hall mobility of 6 cm⁻²/Vs. The proposed technology simplifies and reduces the price of manufacturing uniformly doped ZnO ceramic targets, thin films and optoelectronic devices based on ZnO.

Contacts

Dr. Gleb Colibaba

Moldova State University, MD-2009, Chisinau, Republic of Moldova

Email: gkolibaba@yandex.ru