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Abstract—Traditional mathematical formalisms are 

unable to model modern self-adaptive discrete event systems 

(ADES) because they cannot handle behaviors that change 

at run-time in response to environmental changes. This 

paper introduces a new extension of Reconfigurable Stoc-

hastic reward Nets (RSRN), called Extension Neural Rewri-

ting Petri Nets (ExNRPN), which enables the performability 

modeling and simulation of modern ADESs. ExNRPNs are 

obtained by incorporating in some special transitions of 

RSRNs an extension neural network (ENN) algorithm where 

the run-time calculation and reconfiguration is done in the 

local components, while the adaptation is performed for the 

whole system. The application of the proposed ExNRPN is 

illustrated by performability modeling a particular ADES. 

 

Keywords—adaptive system; extension neural network; 

performability modeling; rewriting rule;  stochatic Petri net 

I. INTRODUCTION  

Modern dynamic discrete-event systems (DES), such 

as computing systems and networks; mobile dynamic Ad-

hoc computer networks and many technological new 

solutions, based on cloud computing and Internet of  

Things applications, etc., must adapt in response to un-

predictable changes in their states and environment to re-

main usefully performing. Traditionally, this adaptation 

has been handled during system downtime, but currently 

there is an increased demand to automate this process and 

perform it while the system is operating [1]. 

 The concept of self-adaptive DES (ADES) was intro-

duced as a realization of continuously adapting systems 

[1]. ADES are capable of changing their behavior and/or 

structure at run-time in response to their perception of the 

environment, the states of the system itself, and its 

requirements. To achieve this, ideally, systems should 

have certain adaptive characteristics known as self -* 

properties introduced in the autonomic computing 

paradigm [2].  

The focus of this paper is on the dynamic performa-

bility modeling of ADES in the context of dynamic self-

reconfiguration (SR), a key and essential property. SR of 

system is the ability to automatically and dynamically 

reconfigure itself in response to changing of states and/or 

environment.This may include installing, removing, and 

composing/decomposing elements of the system [1, 2]. 

There are many formalisms that can be used for this 

purpose such as transition systems, finite automata, pro-

cess algebras [3] and different extensions of Petri nets 

(PNs) [3, 4] such as generalized stochastic PN (GSPN) 

and stochastic reward nets (SRN) [4, 5]. For example, the 

paper [6] presents a new learning Petri net based on 

artificial neural networks (ANN) for modeling adaptive 

software systems. Nevertheless, run-time reconfigurable 

SRN (RSRN) [5] seem a good candidate for performance 

mo-deling of ADES. However, RSRN lack the ability to 

mo-del learning and adaptation based on environmental 

changes with incompatible or contradictory parameters.  

Next, we present a new extension of matrix hybrid 

RSRN [7], called Extension Neural Rewriting Petri Nets 

(ExNRPN), with adaption ability to performance mode-

ling of ADES. It contains extension adaption transitions 

(AT) with learning ability based on extension neural net-

work (ENN) [8] which describes environmental changes.  

The application of the proposed ExNRPN is illustra-

ted by performability modeling  of a particular system. 

II. EXTENICS THEORY FEATURES  

Extenics Theory (ET) was proposed by Wen Cai [9] 

to solve intelligently incompatible or contradictory pro-

blems that cannot be solved by given conditions until a 

proper transformation of the conditions is implemented 
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and reformalizes the concepts to give a solution. There 

are similarities between Fuzzy Set Theory (FST) and ET. 

In standard set applications, transfer function shows if an 

element belongs to a class or not. FST extends this set to 

[0,1], showing the degree an element belongs to the class. 

In [9], it is explained that ET extends FST from [0,1] to 

[−∞,∞] and therefore, this situation leads up with an 

element, belonging to each extension set to a different 

degree. A comparison of Crips logical, Fuzzy and Exten-

sion sets is presented in Table I. 

Classical mathematics is familiar with the quantity 

and shapes of objects. But the Matter-element method 

(MEM) in ET considers both the quality and quantity of 

an object. In the real world, things, objects are 

represented by their quantity and quality. Therefore, 

MEM deals with contradictory issues of quality and 

quantity. ET considers the transformation of these contra-

dictory problems into MEM models and analyzes them 

through their qualitative and quantitative modification. 

Elements of MEM describing a problem must include 

the name of the problem (object), its characteristics and 

the value associated with that characteristic. These three 

basic elements constitute a problem element R , compo-

sed of N (object name), the column vectors: ],,,[ 21 nccc C  

( R  features, criteria) and ],,,[ 21 nvvv V  (respective fea-

ture values) for any given problem [9]. Thus, the formula 

for R  is: ],,[ VCNR  . This triplet represents a 

fundamental unit to describe a multi-dimensional prob-

lem element. In addition, the V vector can have one or 

more values. In the multi-valued case, the range covered 

by the vector V  is called the classical domain. In MEM, 

two intervals are defined  baF ,0
 and  edF , with 

.0 FF  The problem element 
0R  corresponding to it 

0F is 

defined as ],,[ 00 jjFR VC , where ],,,[ ,2,1, njjjj ccc C  

symbolizes the characteristic of 
0F , and the classic 

domain  njnjjjjjj bababa ,,2,2,1,1, ,,,,,,[ V  corres- 

ponds to the value of ,,ijc .,,2,1 ni    

In the same way, the problem element
FR  cor-

responding to F  is expressed as ],,[ kkF FR VC , where 

],,,[ ,2,1, nkkkk ccc C symbolizes the characteristic of F , 

and the domain ],,,,,,[ ,,2,2,1,1,  nknkkkkkk ededed V  

TABLE I THREE DIFFERENT SORTS OF MATHEMATICAL SETS 
 

Compared 

item 

Crisp set Fuzzy set Extension 

set 

Research 
object 

Data 
variables 

Linguistic 
variables 

Contradictory 
issues 

Model Mathematics 

model 

Fuzzy Mathe- 

matics model 

Matter-element 

model 

Descriptive Transfer Membership Correlation 

function function function function 

Proprety Precision Ambiguity Extension 

Range of 

set 
)1,0()( xCA
 ]1,0[)( xA

 

],[)( xKA
 

 

corresponds to the value of ,,ikc .,,2,1 ni    

The distance between two points in classical mathe-

matics is extended in ET in that to calculate the distance 

between a point x  and an interval correlation function 

)(xK  is constructed. The extension distance (ED) bet-

ween an arbitrary point x  and the interval between 

 baF ,0
 and ,,  edF  FF 0

, is expressed as:               

          ,2/)(|2/)(|),( 0 abbaxFx                 (1) 

           .2/)(|2/)(|),( dedexFx   

The membership degree value ),,( 0 FFxD  between the 

point x  and the intervals 
0F and F and the extended 

correlation function )(xK are defined as: 
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As illustrated in Fig. 1, the maximum value of )(xK  

referred to a correlation function occurs for ],[ bax . 

The point x is excluded from F  if 1)( xK , is 

contained in
0F  if 0)( xK  , and is included in the 

extension field if  0)(1  xK . In addition, x can be 

brought in 
0F when a transformation condition is met on 

x in the extension field. 

III. EXTENSION NEURAL NETWORK  

Extension neural network (ENN) [8,10] is a new 

neural network type that is a combination of ET and 

artificial neural network (ANN). While ET makes distan-

ce measurement and extended correlation function for 

classification, ANN is used for its fast and adaptive 

learning capability.  

 

 

Figure 1.  Extension correlation function [9] 
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ENN was first proposed in 2003 by M. H. Wang [8]. 

One of important issues in the field of classification and 

recognition of ENN is how to achieve the best possible 

classifier with a small number of labeled  

training data. In [8, 10], it is shown that ENN gives better 

or equal accuracy and less memory consumption in 

classification than Multilayer Perceptron ANN, Proba-

bilistic ANN and Counter Propagation ANN. 

The structure of an  ENN is presented in Fig. 2.   

Nodes in the output layer of ENN represent the outputs of 

the nodes in the input layer by a set of weights. The total 

number of inputs and outputs are n and
cn , respectively, 

and the total number of instances is 
pN  . The data-points 

are denoted 
p

jix , meaning the instance 
pNi ,,2,1  and the 

characteristic value nj ,,2,1   correspond to the matter-

element p . In ENN, 
p

jix  becomes the input and kio the 

output of the node k for the instance i . Between the 

input
p

jix  and the output kio  there are two sets of weights 

denoted L

jkw  and U

jkw  , respec-tively. These two weights 

are determined by searching for the lower and upper 

bounds of the j  input of the training data. The upper 

bound U

jkw  is found by finding the maximum value for the 

j input node from all input instances, and the lower 

bound L

jkw  is determined inversely. These two weights 

are adjusted in each iteration to perform more accurate 

and efficient classification. Nodes kio  in the output layer 

are the pointers to which an input vector belongs. If i  

instances inputs correspond to the class k , then the value 

kio  of the output layer should be smaller than the other 

output nodes. This situation indicates that the distance 

between the i instances inputs of the class k  is smaller 

than between the other classes. The transfer function is 

presented in (4), where the index of the estimated class is 
*k . The weights and are the points where the extension 

distance 1)( xED ki
. More details on the ED shown in (4) 

and the adjustment of the weights are further discussed. 

 
Figure 2.  The structure of  ENN  [8] 
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)(xEDo kiki  ,  cnk ,,2,1  . 

ENN is a supervised learning method which provides 

an inferring function from supervised training data. 

Training data is the composition of input and desired 

output pairs of following matter-element model : 

],,,[ jkjkkk VcclassR  cnk ,,2,1  ; nj ,,2,1  , (5) 

where 
kclass  is the name of the k  class. The symbols 

,jkc nj ,,2,1   represent the characteristics and 
jkV  

denotes the range for the characteristic jkc  of 
kclass . 

The range value ],[ U

jk

L

jkjk wwV   is determined by U

jkw  

and L

jkw . The learning process of ENN is as follows: in 

the initial step, the weights are determined based on the 

expression (6), searching among all j  instances - the 

maximum and minimum input of the class k  to find the 

respective weights U

jkw  and L

jkw . 

               

i

k

ji

U

jk xw


 }max{ ; 

i

k

ji

L

jk xw


 }min{ ,                    (6) 

pjk Nic ,,2,1,  ,  
cnk ,,2,1  , nj ,,2,1  . 

After maintaining the matter-element model, the 

center of the clusters is determined by 
jkV  as shown in 

(7). We note that the clusters are the representatives of 

the classes. Each class has the same number of clusters as 

the number of inputs. 

         },,,{ 21 nkkkk zzzZ  ,  2/)( L

jk

U

jkjk wwz  ,     (7) 

cnk ,,2,1  , nj ,,2,1  . 

If these initial values are not sufficient for 

classification, after performing the initial steps, to obtain 

a more accurate classification the weights and center of 

the clusters will be updated. The desired classification 

accuracy is determined by the learning performance 

rate ,/ pm NNE 
 where 

mN is the total number of instances 

misclassified, and where 
pN  is the total number of instan-

ces. The update of the cluster weights and center is 

continued until the learning performance rate is low 

enough. All instances must be used during learning. In 

each iteration, an instance must be randomly chosen from 

the training data. In (8), for training, the pattern p

iX , 

whose desired result should be p is randomly chosen: 

           
c

p

ni

p

i

p

i

p

i npxxxX  1},,,,{ 21  .              (8) 

In the next step, the ED method is used to determine 

the respective class based on the input vector p

iX , whose 

elements are the feature values. Then the distance 
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between the training instances p

iX  with data-points 

p

jix and each cluster is calculated. According to (4), the 

distance between the input of the randomly taken instance 

and the k class is calculated. After the distance of each 

entry is calculated for a given class, these distances are 

summed to find the total distance. This procedure must be 

done for each class. The class that gives the minimum 

distance is the class that ENN classifies the current 

instance. However, the desired result is p . If the mini-

mum ED shows that pk * , then no update is needed. If 

pk * , then updating is required to make a more accu-

rate classification. If in the training phase pk * , the 

separator is shifted according to the closeness of the 

inputs to the cluster centers. The amount of change is 

directly proportional to the  ED. The separator *k  of the 

misclassified class is displaced from that of the input 

instances, and the separator p  of the desired class is 

moved next to them as formulated by the expressions (9) 

and (10).The cluster center and weights are both changed. 

                    ),( old
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where  is the learning rate. 

Because the ENN just adjusts the weights of the p -th 

and the *k -th class, the learning of ENN has a speed 

advantage over the other supervised learning algorithms, 

and can quickly adapt to new and important information. 

 In ENN only one output neuron node in the cn output 

layer remains active (the output value is 1) and the output 

values of other neuron nodes are zero to indicate a safety 

status pattern of the input instance. 

The distinctive characteristic of ENN is that the ENN 

can effectively solve the classification and recognition 

problems whose features are defined over an interval. 

IV. EXTENSION NEURAL REWRITING PETRI NETS 

In this section we provide a ExNRPN definitiоn, 

firing rules оf the respective transitiоns and rewriting 

rules by the current marking and environmental changes. 

We assume that the readers are familiar with the basic 

concepts of RSRN and hybrid ,SRN called ,HSRN with 

matrix attributes (HSRNM) [5, 7].  Next, due to the space 

restrictions, we will only give a brief  overview to this 

topic. For more comprehensive details to RSRN and 

HSRNM we let the readers refer  to [4, 5, 7].  

Let 
IN (resp. IR ) be the set of natural (resp. 

positive real ) numbers.      

The definition of an ExNRPN is derived according to 

[5, 7] and inherits most of the RSRN and HSRNM  cha-

racteristics. Thus, the ExNRPN, denoted R , is defined as 

a 17-tuple system such that R = P, T, R, h, 
rcsA , Pri, 

EG , RG , pK ,  ,  , V,  , 
0M , 

RLib ,  , 
ENNLib  , 

where: CD PPP   is a finite set of places, where DP  

is the set of all discrete places and CP  is the set of 

continuous places; AtCD TTTT  is a finite set of 

transitions, where DT , CT and AtT are the sets of discrete, 

continuous and adaptive transitions, respectively; 

},,{: DCATPh   is a mapping to assign an iden-

tifier to each node, where “A; C; D ” indicate for every 

node whether it is adaptive, continuous or discrete; Let 

RTE D  be a finite set of events, RT D , 

EP , where R is a finite set of rewriting rules 

about the run-time structural change (reconfiguration) of 

R . The set E  is partitioned into 
EEE  0 , 

 EE0
 so that: 

E   is a set of timed events and 
0E  

is a set of immediate events;
rcsA = < Pre, Post, Inh > is a 

set of forward, backward and inhibition arcs functions, 

that describes the respectively arcs with marking-

dependent weight cardinalities; Pri defines the dynamic 

marking-dependent priority function for the firing of each 

enabled Ee . The firing of an enabled event with hig-

her priority potentially disables all events Ee  with the 

lower priority. By default, the Pri(
0E )>Pri(

E ); 

 

||: PE INEG {True, False} is the set of guard 

function associated with all event Ee  and 

 

||: PR INRG {True, False} is the set of guard 

function associated with all rewriting rule Rr ; 

}{: ||   ININPK Pp  is the capacity bound of each 

place Ppi  , which can contain an integer or real 

number of tokens [5]. By default, p

iK  it is  ; 
0M  is 

the initial marking; 

  IRINE P ||:
~


 is the function that 

determines the firing rate  ),(
~

0 Me   of timed 

event ,Ee that is enabled by current marking 

;M 

  IRINE P ||

0:  is the weight function 

 ),(0 Me  which determines the firing 

probability ),( Mtq  of immediate event 
0Ee , therein 

describes a probabilistic selector; 

  IRINTV
APC ||

: is 

the marking dependent fluid rate function of .CT . If 
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C

j Tu   is enabled in tangible marking M it fires with 

rate Vj(M), that continuously changes the fluid level of 

continuous place ;CPb  IREP:~  is the function 

that determines the reward rates (real numbers) assigned 

to each current marking M and to each firing event 

Ee ; 
RLib  is the set of ,R  

 n,,2,1   subnets and 

parameters pattern class library involved in structural 

reconfiguration of the current R configuration by firing 

of an enabled rewriting rule Rr ; At

ENN TLib :  is a 

mapping to assign a ENN to each adaptive transition, 

where 
ENNLib  is the set of all ENNs;                                                                                                       

 Fig. 3 summarizes the graphical representation HSRN 

primitive elements of R . 

Enabling and firing rules of events Ee and 

continuous transitions by current marking M in R are 

the same as for RSRN and HSRNM  [5, 7]. 

To develop and present more compact R  models we 

will use the approaches presented in [ 5, 7, 11]. We pre-

sent here only the most important features of Matrix 

Transi-tion Net (MTN) [11] wthere matrices are used 

instead of places (transitions) and other attributes as in 

PNs and SRNs. MTD models are more expressive and 

compact than PNs and capture a greater amount of 

information. Removal (placement) of tokens in MTN is a 

simple sub-traction (addition) of the input (output) matrix 

from the input (output) function matrix. The result should 

be the updated input matrix (output) after transition 

firing, i.e. this is the next marking of that matrix. 

Graphically, a matrix attributes of R  models will be 

presented in a way that its will contain in square brackets 

the matrix name [7]. So, for example, a direct arc matrix 

cardinality, denoted by  , can take values that are 

contained in a specified matrix A. 

An adaptive transition, called At - transition, is a tran-

sition associated with a respective learned ENN.  

Fig. 4 shows an At – transition, ,jAt  that corres-

ponds to the ENN in Fig. 2. The inputs of an At - 

transition are presented by Matrix C-place 
1][ njB that 

determine the respective inputs of the ENN, while the 

marking of the output D – place 
kp  represent the order 

number of the *k -th class selected by the ENN function . 

 

Figure 3.  The graphical primitive of the HSRN 

 

jAt

)(j kp

*),( kpAtw kj 
niX 1][

nj 1][B

 
Figure 4.  An At-transition representing the ENN in figure 2 

If the outputs of two or more At-transitions can 

eventually access the same place, they operate indepen-

dently. This structure can be used to model two compo-

nents that separately and independently complete adap-

tation. But since their outputs eventually reach the same 

D-transition, they are dependent on each other. This 

structure is used to model that several components are 

combined together to complete the adaptation. At -

transitions have lower priorities than C-transitions and D-

transitions in a conflict. 

V. PERFORMABILITY MODELING CASE STUDY 

In this section, we will illustrate the application of the 

ExNRPN to performability modeling of a particular DES, 

for exemple, steam turbine generator [12], manufacturing 

system [6]. The concept of performability emerged from 

a need to assess a system's ability to perform when per-

formance degrades as a consequence of faults. 

In Fig. 5 is presented the FMSRN1 model, denoted 

1R , which describes the behavior, on-line ENN fault 

diagnosis [6, 10] and recovery of a particular ADES. The 

meanings of places and transitions in 1R  model: 

 Places. 1p - initiation of the maintenance pe-

riod; 2p - operation of the system during the diagno-

sis; 3p - reliable operation of the system; 4p - setting 

the generation of the current values of the environment pa- 

 

niX 1][

niX 1][

*k

Cn1]1[R

n1]1[B

pN

 

Figure 5.  1R  performability  model of steam turbine generator 
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rameters; 9,5 pp - the end of the diagnosed fault reco-

very; 6p - indicator of the *k type of diagnosed fault; 

7p - initiating the recovery of the system in reliable 

state; 8p - ENN is ready to diagnose the system; 10p - 

indicate the total number 
pNpM )10(0
 of instances enviro-

nment space parameters; 11p  - control place that gene-

rates the current environment instance. 

 Timed transitions. 1t - system maintenance 

time period; 2t - the duration of the system's operation 

during the diagnostics; 3t - reliable system operation 

time; 4t - system recovery time; 5t - generation time of 

a new environment parameter instance; 6t - the current 

instance time of the environment. 

 Immediate transitions. 1tq - generation of the 

environment current instance; 2tq - elimination of the 

markings  in matrix C-place 1b ; 3tq - reseting of ENN. 

There are
pN  environmental instances

iX that are rep-

resented in a matrix .X Each instance is an line - vector 

),,,( ,2,1, niiii xxxX  and it can be randomly chosen 

from the matrix X using the control place 11p , such that 

)11(pMi   specify the index row of X .  

The line-vector ),,,(1 21 Cnrrr R describes all the 

rewriting rules for on-line reconfiguration of 1R  model. 

With each rewriting rule 1Rjr  is associated the respec-

tive type of diagnosed fault 
jF , i.e. 

jF involves enabling 

an firing of .jr Thus, the selection of jr to be enabled and 

fired depends on the current marking of the control 

place 6p , i.e. 0)6(  pMj  specify the index of jr . 

The guard functions of rewriting rule jr in 1R  are:  

;)06((:)(  pMrg j

E "":)( Truerg j

R  , .,,2,1 cnj   

Generation of environment parameters: if transition 1tq is 

enabled, its firing generates a line-vector quantity, written 

as ),,,( 1,1,1, iiii xxxX  , where each component is a 

positive real number. The reason is that if the system cap-

tures the change of the environment, that is reflected in 

the line-vector cardinalite of directed arc ).1,1( btq  The 

weights can be adjusted during the training process of a 

ENN1, which adds the adaptation ability to the 1R . 

A dynamic reconfiguration of 1R  by the firing of 

enabled Rrj   is a map w

Lj j
RRr  : , The  operator   

represents a binary rewriting operation which produces a 

structural change in 1R  by replacing the current subnet 

1 RR L
 (

LR is dissolved) and a new 
R

w LibR
j
 subnet  

is added and belongs to the new modified resulting 

underlying net ,)\1(1 w

L j
RRNRR  where the mea-

ning of \ (and ) is operation of removing  (adding) 

L
RN from ( w

j
R  to) 1R . As exemple, in our 

case .: 4tR L   For more detail to using of the  see [5]. 

Performability analysis of 1R  model can be perfor-

med following the approach described in [5, 7]. 
In a future work, we will focus on developing a visual 

simulator software system incorporate into VRPN Tool-

Box [13] with a friendly interface for checking beha-

vioral properties and performability analysis of R models 

that involve other kinds of law time distributions fuzzy 

parameters of transition and firing rewriting rules. 
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