
20-21 October, 2022

Chisinau, Republic of Moldova IC ECCO-2022
The 12th International Conference on

Electronics, Communications and Computing

https://doi.org/10.52326/ic-ecco.2022/CS.03

162

Performability Modeling of Self-Adaptive

Systems Based on Extension Neural Rewriting

Stochastic Petri Nets

Alexei Sclifos
1
, ORCID: 0000-0003-4531-7944

Emilia Sclifos
1
, ORCID:0000-0003-1986-7256

Emilian Guțuleac
1
, ORCID: 0000-0001-6839-514X

1
 Technical University of Moldova, Bd. Ștefan cel Mare, 168, MD-2004, Chișinău, R. Moldova,

emilian.gutuleac@calc.utm.md, https://utm.md

Abstract—Traditional mathematical formalisms are

unable to model modern self-adaptive discrete event systems

(ADES) because they cannot handle behaviors that change

at run-time in response to environmental changes. This

paper introduces a new extension of Reconfigurable Stoc-

hastic reward Nets (RSRN), called Extension Neural Rewri-

ting Petri Nets (ExNRPN), which enables the performability

modeling and simulation of modern ADESs. ExNRPNs are

obtained by incorporating in some special transitions of

RSRNs an extension neural network (ENN) algorithm where

the run-time calculation and reconfiguration is done in the

local components, while the adaptation is performed for the

whole system. The application of the proposed ExNRPN is

illustrated by performability modeling a particular ADES.

Keywords—adaptive system; extension neural network;

performability modeling; rewriting rule; stochatic Petri net

I. INTRODUCTION

Modern dynamic discrete-event systems (DES), such

as computing systems and networks; mobile dynamic Ad-

hoc computer networks and many technological new

solutions, based on cloud computing and Internet of

Things applications, etc., must adapt in response to un-

predictable changes in their states and environment to re-

main usefully performing. Traditionally, this adaptation

has been handled during system downtime, but currently

there is an increased demand to automate this process and

perform it while the system is operating [1].

 The concept of self-adaptive DES (ADES) was intro-

duced as a realization of continuously adapting systems

[1]. ADES are capable of changing their behavior and/or

structure at run-time in response to their perception of the

environment, the states of the system itself, and its

requirements. To achieve this, ideally, systems should

have certain adaptive characteristics known as self -*

properties introduced in the autonomic computing

paradigm [2].

The focus of this paper is on the dynamic performa-

bility modeling of ADES in the context of dynamic self-

reconfiguration (SR), a key and essential property. SR of

system is the ability to automatically and dynamically

reconfigure itself in response to changing of states and/or

environment.This may include installing, removing, and

composing/decomposing elements of the system [1, 2].

There are many formalisms that can be used for this

purpose such as transition systems, finite automata, pro-

cess algebras [3] and different extensions of Petri nets

(PNs) [3, 4] such as generalized stochastic PN (GSPN)

and stochastic reward nets (SRN) [4, 5]. For example, the

paper [6] presents a new learning Petri net based on

artificial neural networks (ANN) for modeling adaptive

software systems. Nevertheless, run-time reconfigurable

SRN (RSRN) [5] seem a good candidate for performance

mo-deling of ADES. However, RSRN lack the ability to

mo-del learning and adaptation based on environmental

changes with incompatible or contradictory parameters.

Next, we present a new extension of matrix hybrid

RSRN [7], called Extension Neural Rewriting Petri Nets

(ExNRPN), with adaption ability to performance mode-

ling of ADES. It contains extension adaption transitions

(AT) with learning ability based on extension neural net-

work (ENN) [8] which describes environmental changes.

The application of the proposed ExNRPN is illustra-

ted by performability modeling of a particular system.

II. EXTENICS THEORY FEATURES

Extenics Theory (ET) was proposed by Wen Cai [9]

to solve intelligently incompatible or contradictory pro-

blems that cannot be solved by given conditions until a

proper transformation of the conditions is implemented

https://doi.org/10.52326/ic-ecco.2022/CS.03

20-21 October, 2022

Chisinau, Republic of Moldova IC ECCO-2022
The 12th International Conference on

Electronics, Communications and Computing

163

and reformalizes the concepts to give a solution. There

are similarities between Fuzzy Set Theory (FST) and ET.

In standard set applications, transfer function shows if an

element belongs to a class or not. FST extends this set to

[0,1], showing the degree an element belongs to the class.

In [9], it is explained that ET extends FST from [0,1] to

[−∞,∞] and therefore, this situation leads up with an

element, belonging to each extension set to a different

degree. A comparison of Crips logical, Fuzzy and Exten-

sion sets is presented in Table I.

Classical mathematics is familiar with the quantity

and shapes of objects. But the Matter-element method

(MEM) in ET considers both the quality and quantity of

an object. In the real world, things, objects are

represented by their quantity and quality. Therefore,

MEM deals with contradictory issues of quality and

quantity. ET considers the transformation of these contra-

dictory problems into MEM models and analyzes them

through their qualitative and quantitative modification.

Elements of MEM describing a problem must include

the name of the problem (object), its characteristics and

the value associated with that characteristic. These three

basic elements constitute a problem element R , compo-

sed of N (object name), the column vectors:],,,[21 nccc C

(R features, criteria) and],,,[21 nvvv V (respective fea-

ture values) for any given problem [9]. Thus, the formula

for R is:],,[VCNR  . This triplet represents a

fundamental unit to describe a multi-dimensional prob-

lem element. In addition, the V vector can have one or

more values. In the multi-valued case, the range covered

by the vector V is called the classical domain. In MEM,

two intervals are defined  baF ,0
 and  edF , with

.0 FF  The problem element
0R corresponding to it

0F is

defined as],,[00 jjFR VC , where],,,[,2,1, njjjj ccc C

symbolizes the characteristic of
0F , and the classic

domain  njnjjjjjj bababa ,,2,2,1,1, ,,,,,,[V corres-

ponds to the value of ,,ijc .,,2,1 ni 

In the same way, the problem element
FR cor-

responding to F is expressed as],,[kkF FR VC , where

],,,[,2,1, nkkkk ccc C symbolizes the characteristic of F ,

and the domain],,,,,,[,,2,2,1,1,  nknkkkkkk ededed V

TABLE I THREE DIFFERENT SORTS OF MATHEMATICAL SETS

Compared

item

Crisp set Fuzzy set Extension

set

Research
object

Data
variables

Linguistic
variables

Contradictory
issues

Model Mathematics

model

Fuzzy Mathe-

matics model

Matter-element

model

Descriptive Transfer Membership Correlation

function function function function

Proprety Precision Ambiguity Extension

Range of

set
)1,0()(xCA
]1,0[)(xA

],[)(xKA

corresponds to the value of ,,ikc .,,2,1 ni 

The distance between two points in classical mathe-

matics is extended in ET in that to calculate the distance

between a point x and an interval correlation function

)(xK is constructed. The extension distance (ED) bet-

ween an arbitrary point x and the interval between

 baF ,0
 and ,,  edF FF 0

, is expressed as:

 ,2/)(|2/)(|),(0 abbaxFx  (1)

 .2/)(|2/)(|),(dedexFx 

The membership degree value),,(0 FFxD between the

point x and the intervals
0F and F and the extended

correlation function)(xK are defined as:










0

00

0
,1

),,(),(
),,(

Fx

FxFxFx
FFxD


, (2)













Fx

FFxD

Fx

FxFx

xK
,

),,(

),(

),,(

)(

0

0

00




. (3)

As illustrated in Fig. 1, the maximum value of)(xK

referred to a correlation function occurs for],[bax .

The point x is excluded from F if 1)(xK , is

contained in
0F if 0)(xK , and is included in the

extension field if 0)(1  xK . In addition, x can be

brought in
0F when a transformation condition is met on

x in the extension field.

III. EXTENSION NEURAL NETWORK

Extension neural network (ENN) [8,10] is a new

neural network type that is a combination of ET and

artificial neural network (ANN). While ET makes distan-

ce measurement and extended correlation function for

classification, ANN is used for its fast and adaptive

learning capability.

Figure 1. Extension correlation function [9]

20-21 October, 2022

Chisinau, Republic of Moldova IC ECCO-2022
The 12th International Conference on

Electronics, Communications and Computing

164

ENN was first proposed in 2003 by M. H. Wang [8].

One of important issues in the field of classification and

recognition of ENN is how to achieve the best possible

classifier with a small number of labeled

training data. In [8, 10], it is shown that ENN gives better

or equal accuracy and less memory consumption in

classification than Multilayer Perceptron ANN, Proba-

bilistic ANN and Counter Propagation ANN.

The structure of an ENN is presented in Fig. 2.

Nodes in the output layer of ENN represent the outputs of

the nodes in the input layer by a set of weights. The total

number of inputs and outputs are n and
cn , respectively,

and the total number of instances is
pN . The data-points

are denoted
p

jix , meaning the instance
pNi ,,2,1  and the

characteristic value nj ,,2,1  correspond to the matter-

element p . In ENN,
p

jix becomes the input and kio the

output of the node k for the instance i . Between the

input
p

jix and the output kio there are two sets of weights

denoted L

jkw and U

jkw , respec-tively. These two weights

are determined by searching for the lower and upper

bounds of the j input of the training data. The upper

bound U

jkw is found by finding the maximum value for the

j input node from all input instances, and the lower

bound L

jkw is determined inversely. These two weights

are adjusted in each iteration to perform more accurate

and efficient classification. Nodes kio in the output layer

are the pointers to which an input vector belongs. If i

instances inputs correspond to the class k , then the value

kio of the output layer should be smaller than the other

output nodes. This situation indicates that the distance

between the i instances inputs of the class k is smaller

than between the other classes. The transfer function is

presented in (4), where the index of the estimated class is
*k . The weights and are the points where the extension

distance 1)(xED ki
. More details on the ED shown in (4)

and the adjustment of the weights are further discussed.

Figure 2. The structure of ENN [8]

 ,1
|2/)(|

2/)(||
)(

0  



















n

j L

ji

U

ji

L

ji

U

jijk

p

ji

ki
ww

wwzx
xED (4)

)(xEDo kiki  , cnk ,,2,1  .

ENN is a supervised learning method which provides

an inferring function from supervised training data.

Training data is the composition of input and desired

output pairs of following matter-element model :

],,,[jkjkkk VcclassR  cnk ,,2,1  ; nj ,,2,1  , (5)

where
kclass is the name of the k class. The symbols

,jkc nj ,,2,1  represent the characteristics and
jkV

denotes the range for the characteristic jkc of
kclass .

The range value],[U

jk

L

jkjk wwV  is determined by U

jkw

and L

jkw . The learning process of ENN is as follows: in

the initial step, the weights are determined based on the

expression (6), searching among all j instances - the

maximum and minimum input of the class k to find the

respective weights U

jkw and L

jkw .

i

k

ji

U

jk xw


 }max{ ;

i

k

ji

L

jk xw


 }min{ , (6)

pjk Nic ,,2,1,  ,
cnk ,,2,1  , nj ,,2,1  .

After maintaining the matter-element model, the

center of the clusters is determined by
jkV as shown in

(7). We note that the clusters are the representatives of

the classes. Each class has the same number of clusters as

the number of inputs.

 },,,{ 21 nkkkk zzzZ  , 2/)(L

jk

U

jkjk wwz  , (7)

cnk ,,2,1  , nj ,,2,1  .

If these initial values are not sufficient for

classification, after performing the initial steps, to obtain

a more accurate classification the weights and center of

the clusters will be updated. The desired classification

accuracy is determined by the learning performance

rate ,/ pm NNE 
 where

mN is the total number of instances

misclassified, and where
pN is the total number of instan-

ces. The update of the cluster weights and center is

continued until the learning performance rate is low

enough. All instances must be used during learning. In

each iteration, an instance must be randomly chosen from

the training data. In (8), for training, the pattern p

iX ,

whose desired result should be p is randomly chosen:

c

p

ni

p

i

p

i

p

i npxxxX  1},,,,{ 21  . (8)

In the next step, the ED method is used to determine

the respective class based on the input vector p

iX , whose

elements are the feature values. Then the distance

20-21 October, 2022

Chisinau, Republic of Moldova IC ECCO-2022
The 12th International Conference on

Electronics, Communications and Computing

165

between the training instances p

iX with data-points

p

jix and each cluster is calculated. According to (4), the

distance between the input of the randomly taken instance

and the k class is calculated. After the distance of each

entry is calculated for a given class, these distances are

summed to find the total distance. This procedure must be

done for each class. The class that gives the minimum

distance is the class that ENN classifies the current

instance. However, the desired result is p . If the mini-

mum ED shows that pk * , then no update is needed. If

pk * , then updating is required to make a more accu-

rate classification. If in the training phase pk * , the

separator is shifted according to the closeness of the

inputs to the cluster centers. The amount of change is

directly proportional to the ED. The separator *k of the

misclassified class is displaced from that of the input

instances, and the separator p of the desired class is

moved next to them as formulated by the expressions (9)

and (10).The cluster center and weights are both changed.

),(old

jp

p

ji

old

jp

new

jp zxzz   (9)

)(***

old

jk

p

ji

old

jk

new

jk
zxzz   .

),(old

jp

p

ji

Lold

jp

Lnew

jp zxww   (10)

),(old

jp

p

ji

Uold

jp

Unew

jp zxww  

),(***

old

jk

p

ji

Lold

jk

Lnew

jk
zxww  

,)(***

old

jk

p

ji

Uold

jk

Unew

jk
zxww  

where is the learning rate.

Because the ENN just adjusts the weights of the p -th

and the *k -th class, the learning of ENN has a speed

advantage over the other supervised learning algorithms,

and can quickly adapt to new and important information.

 In ENN only one output neuron node in the cn output

layer remains active (the output value is 1) and the output

values of other neuron nodes are zero to indicate a safety

status pattern of the input instance.

The distinctive characteristic of ENN is that the ENN

can effectively solve the classification and recognition

problems whose features are defined over an interval.

IV. EXTENSION NEURAL REWRITING PETRI NETS

In this section we provide a ExNRPN definitiоn,

firing rules оf the respective transitiоns and rewriting

rules by the current marking and environmental changes.

We assume that the readers are familiar with the basic

concepts of RSRN and hybrid ,SRN called ,HSRN with

matrix attributes (HSRNM) [5, 7]. Next, due to the space

restrictions, we will only give a brief overview to this

topic. For more comprehensive details to RSRN and

HSRNM we let the readers refer to [4, 5, 7].

Let
IN (resp. IR) be the set of natural (resp.

positive real) numbers.

The definition of an ExNRPN is derived according to

[5, 7] and inherits most of the RSRN and HSRNM cha-

racteristics. Thus, the ExNRPN, denoted R , is defined as

a 17-tuple system such that R = P, T, R, h,
rcsA , Pri,

EG , RG , pK ,  ,  , V,  ,
0M ,

RLib ,  ,
ENNLib  ,

where: CD PPP  is a finite set of places, where DP

is the set of all discrete places and CP is the set of

continuous places; AtCD TTTT  is a finite set of

transitions, where DT , CT and AtT are the sets of discrete,

continuous and adaptive transitions, respectively;

},,{: DCATPh  is a mapping to assign an iden-

tifier to each node, where “A; C; D ” indicate for every

node whether it is adaptive, continuous or discrete; Let

RTE D  be a finite set of events, RT D ,

EP , where R is a finite set of rewriting rules

about the run-time structural change (reconfiguration) of

R . The set E is partitioned into
EEE  0 ,

 EE0
 so that:

E is a set of timed events and
0E

is a set of immediate events;
rcsA = < Pre, Post, Inh > is a

set of forward, backward and inhibition arcs functions,

that describes the respectively arcs with marking-

dependent weight cardinalities; Pri defines the dynamic

marking-dependent priority function for the firing of each

enabled Ee . The firing of an enabled event with hig-

her priority potentially disables all events Ee with the

lower priority. By default, the Pri(
0E)>Pri(

E);

 

||: PE INEG {True, False} is the set of guard

function associated with all event Ee and

 

||: PR INRG {True, False} is the set of guard

function associated with all rewriting rule Rr ;

}{: ||   ININPK Pp is the capacity bound of each

place Ppi  , which can contain an integer or real

number of tokens [5]. By default, p

iK it is  ;
0M is

the initial marking; 

  IRINE P ||:
~


 is the function that

determines the firing rate ),(
~

0 Me of timed

event ,Ee that is enabled by current marking

;M 

  IRINE P ||

0: is the weight function

),(0 Me which determines the firing

probability),(Mtq of immediate event
0Ee , therein

describes a probabilistic selector; 

  IRINTV
APC ||

: is

the marking dependent fluid rate function of .CT . If

20-21 October, 2022

Chisinau, Republic of Moldova IC ECCO-2022
The 12th International Conference on

Electronics, Communications and Computing

166

C

j Tu  is enabled in tangible marking M it fires with

rate Vj(M), that continuously changes the fluid level of

continuous place ;CPb  IREP:~ is the function

that determines the reward rates (real numbers) assigned

to each current marking M and to each firing event

Ee ;
RLib is the set of ,R

 n,,2,1  subnets and

parameters pattern class library involved in structural

reconfiguration of the current R configuration by firing

of an enabled rewriting rule Rr ; At

ENN TLib : is a

mapping to assign a ENN to each adaptive transition,

where
ENNLib is the set of all ENNs;

 Fig. 3 summarizes the graphical representation HSRN

primitive elements of R .

Enabling and firing rules of events Ee and

continuous transitions by current marking M in R are

the same as for RSRN and HSRNM [5, 7].

To develop and present more compact R models we

will use the approaches presented in [5, 7, 11]. We pre-

sent here only the most important features of Matrix

Transi-tion Net (MTN) [11] wthere matrices are used

instead of places (transitions) and other attributes as in

PNs and SRNs. MTD models are more expressive and

compact than PNs and capture a greater amount of

information. Removal (placement) of tokens in MTN is a

simple sub-traction (addition) of the input (output) matrix

from the input (output) function matrix. The result should

be the updated input matrix (output) after transition

firing, i.e. this is the next marking of that matrix.

Graphically, a matrix attributes of R models will be

presented in a way that its will contain in square brackets

the matrix name [7]. So, for example, a direct arc matrix

cardinality, denoted by , can take values that are

contained in a specified matrix A.

An adaptive transition, called At - transition, is a tran-

sition associated with a respective learned ENN.

Fig. 4 shows an At – transition, ,jAt that corres-

ponds to the ENN in Fig. 2. The inputs of an At -

transition are presented by Matrix C-place
1][njB that

determine the respective inputs of the ENN, while the

marking of the output D – place
kp represent the order

number of the *k -th class selected by the ENN function .

Figure 3. The graphical primitive of the HSRN

jAt

)(j kp

*),(kpAtw kj 
niX 1][

nj 1][B

Figure 4. An At-transition representing the ENN in figure 2

If the outputs of two or more At-transitions can

eventually access the same place, they operate indepen-

dently. This structure can be used to model two compo-

nents that separately and independently complete adap-

tation. But since their outputs eventually reach the same

D-transition, they are dependent on each other. This

structure is used to model that several components are

combined together to complete the adaptation. At -

transitions have lower priorities than C-transitions and D-

transitions in a conflict.

V. PERFORMABILITY MODELING CASE STUDY

In this section, we will illustrate the application of the

ExNRPN to performability modeling of a particular DES,

for exemple, steam turbine generator [12], manufacturing

system [6]. The concept of performability emerged from

a need to assess a system's ability to perform when per-

formance degrades as a consequence of faults.

In Fig. 5 is presented the FMSRN1 model, denoted

1R , which describes the behavior, on-line ENN fault

diagnosis [6, 10] and recovery of a particular ADES. The

meanings of places and transitions in 1R model:

 Places. 1p - initiation of the maintenance pe-

riod; 2p - operation of the system during the diagno-

sis; 3p - reliable operation of the system; 4p - setting

the generation of the current values of the environment pa-

niX 1][

niX 1][

*k

Cn1]1[R

n1]1[B

pN

Figure 5. 1R performability model of steam turbine generator

20-21 October, 2022

Chisinau, Republic of Moldova IC ECCO-2022
The 12th International Conference on

Electronics, Communications and Computing

167

rameters; 9,5 pp - the end of the diagnosed fault reco-

very; 6p - indicator of the *k type of diagnosed fault;

7p - initiating the recovery of the system in reliable

state; 8p - ENN is ready to diagnose the system; 10p -

indicate the total number
pNpM )10(0
 of instances enviro-

nment space parameters; 11p - control place that gene-

rates the current environment instance.

 Timed transitions. 1t - system maintenance

time period; 2t - the duration of the system's operation

during the diagnostics; 3t - reliable system operation

time; 4t - system recovery time; 5t - generation time of

a new environment parameter instance; 6t - the current

instance time of the environment.

 Immediate transitions. 1tq - generation of the

environment current instance; 2tq - elimination of the

markings in matrix C-place 1b ; 3tq - reseting of ENN.

There are
pN environmental instances

iX that are rep-

resented in a matrix .X Each instance is an line - vector

),,,(,2,1, niiii xxxX  and it can be randomly chosen

from the matrix X using the control place 11p , such that

)11(pMi  specify the index row of X .

The line-vector),,,(1 21 Cnrrr R describes all the

rewriting rules for on-line reconfiguration of 1R model.

With each rewriting rule 1Rjr is associated the respec-

tive type of diagnosed fault
jF , i.e.

jF involves enabling

an firing of .jr Thus, the selection of jr to be enabled and

fired depends on the current marking of the control

place 6p , i.e. 0)6( pMj specify the index of jr .

The guard functions of rewriting rule jr in 1R are:

;)06((:)( pMrg j

E "":)(Truerg j

R  , .,,2,1 cnj 

Generation of environment parameters: if transition 1tq is

enabled, its firing generates a line-vector quantity, written

as),,,(1,1,1, iiii xxxX  , where each component is a

positive real number. The reason is that if the system cap-

tures the change of the environment, that is reflected in

the line-vector cardinalite of directed arc).1,1(btq The

weights can be adjusted during the training process of a

ENN1, which adds the adaptation ability to the 1R .

A dynamic reconfiguration of 1R by the firing of

enabled Rrj  is a map w

Lj j
RRr  : , The operator 

represents a binary rewriting operation which produces a

structural change in 1R by replacing the current subnet

1 RR L
 (

LR is dissolved) and a new
R

w LibR
j
 subnet

is added and belongs to the new modified resulting

underlying net ,)\1(1 w

L j
RRNRR  where the mea-

ning of \ (and ) is operation of removing (adding)

L
RN from (w

j
R to) 1R . As exemple, in our

case .: 4tR L  For more detail to using of the  see [5].

Performability analysis of 1R model can be perfor-

med following the approach described in [5, 7].
In a future work, we will focus on developing a visual

simulator software system incorporate into VRPN Tool-

Box [13] with a friendly interface for checking beha-

vioral properties and performability analysis of R models

that involve other kinds of law time distributions fuzzy

parameters of transition and firing rewriting rules.

REFERENCES

[1] C. Krupitzer et al., “A survey on engineering approaches for self-

adaptive systems,” Pervasive and Mobile Computing 17, pp. 184–

206, 2015.
[2] O. Kephart, D. M. Chess, “The vision of autonomic computing,”

Computer, 36.1 pp. 41–50, 2003.

[3] D. Weyns, M. Iftikhar, D. Iglesia, T. Ahmad, “A survey of formal
methods in self-adaptive systems,” Proceedings C3S2E, Montreal,

QC, Canada, pp. 67–79, 2012.

[4] G. Chiola, M. Ajmone- Marsan, G. Balbo, G. Conte, “Generalized
stochastic Petri nets: A definition at the net level and its impli-

cations,” IEEE Transactions on Software Engineering, 19 (2), pp.

89-107, 1993.
[5] V. Moraru, E. Guţuleac, S. Zaporojan, “Uncertainty modelling of

dynamically reconfigurable systems based on rewriting stochastic

reward nets with z-fuzzy parameters,” Computer Science Journal
of Moldova, Vol.29, No.3(87), pp. 388-406, 2021.

[6] Z. Ding, Y. Zhou, M. Zhou, Modeling Self-Adaptive Software

Systems with Learning Petri Nets,” IEEE Transactions on
Systems, MAN, and Cybernetics: Systems, Vol. 46, No. 4, pp. 483-

498, 2016.

[7] E. Guţuleac, S. Zaporojan, I. Gîrleanu, V. Cărbune, “Hybrid stoc-
hastic Petri nets with matrix attributes for modelling of discrete-

continuous process,” Meridian Ingineresc, No. 2, pp. 34–40, 2016.

[8] M.H. Wang, C P. Hung, “Extension neural network and its appli-
cations,” NeuralNetw. Off. J. Int. Neural Netw. Soc. 16 (5–6), pp.

779–784, 2003.
[9] W. Cai, “The extension set and incompatibility problem,” J.

Science Exploration 3(1), pp. 81–93, 1983.

[10] M. H. Wang,“Extension Neural Network-Type 2 and Its Applica-

tions,” IEEE Transactions on Neural Networks, Vol. 16, No. 6, pp.
1352-1361, 2005.

[11] A. S. Staines, F. Neri, “A Matrix Transition Oriented Net for

Modeling Distributed Complex Computer and Communication
Systems,” WSEAS Transact. on Systems, Vol. 13, pp. 12-22, 2014.

[12] M. H. Wang, “Application of extension theory to vibration fault

diagnosis of generator sets,” IEE Proc.-Gener. Transm. Distrib.,
Vol. 151, No. 4, pp. 503-508, 2004.

[13] Iu. Ţurcanu, E. Guţuleac, Em. E. Guţuleac, “VRPN-software tool

for the modeling of marked-controlled rewriting generalized Petri
nets,” Proc. of the 5-th International Conference on ICMCS- 2007,

Vol. 1, pp. 239-245, 2007.

