
Conferinţa Tehnico-Ştiinţifică a Studenţilor, Masteranzilor și Doctoranzilor, Universitatea Tehnică a Moldovei

Chișinău, Republica Moldova, 5-7 aprilie 2023, Vol. I

- 130 -

THE DEVELOPMENT OF A DOMAIN SPECIFIC MARKUP LANGUAGE

FOR INTERACTIVE STORYTELLING

Denis PRODAN1 , Rodica PRODAN1,

Sandu GAZEA1, Daniel BUCĂTARU1,

Nicolae CHIPERI1

1Department of Software Engineering and Automation, Group FAF-211, Faculty of Computers, Informatics and

Microelectronics, Technical University of Moldova, Chisinau, Republic of Moldova

*Corresponding author: Denis Prodan, denis.prodan@isa.utm.md

Scientific coordinator: Braga Vasili, University lecturer, Technical University of Moldova

Abstract. The problem being dealt with is the need for a more intuitive and user-friendly DSL for

creating interactive stories with branching paths and multiple outcomes. The language should

incorporate declarative and imperative syntax, objects, variables, and collections, and require user

input in the form of choices and interactions. User-generated content and various types of output can

enhance the storytelling experience. The goal is to create a program that allows for dynamic,

personalized stories that engage the reader and encourage active participation.

Keywords: DSL, storytelling, outcomes, branches, grammar, parse tree.

 Introduction

Interactive storytelling is a rapidly growing field that involves creating stories where the

reader or player performs an active role in shaping the narrative. While there are numerous

programming languages available for game and simulation development, creating interactive stories

with different pathways and multiple outcomes can be a complex and time-consuming task. This is

where a domain-specific language (DSL) can prove to be incredibly beneficial. A domain-specific

language (DSL) is a programming language that is designed for a specific domain or task, rather than

being a general-purpose language. A DSL that is specifically designed for interactive storytelling can

provide domain experts, such as writers, game designers, and virtual reality enthusiasts, with a more

intuitive and user-friendly way to create compelling stories with branching paths and dynamic

outcomes. By using a DSL, domain experts can focus more on the creative aspects of storytelling and

less on the technical details of programming, thereby enabling them to bring their ideas to life more

efficiently and effectively. Furthermore, a DSL has more benefits, like: productivity, quality,

validation and verification, data longevity, platform independence, and domain involvement [1].

Domain Analysis

The problem being addressed is the creation of a DSL that provides a more intuitive and

concise way to create interactive stories. While there are numerous programming languages available

for developing games and simulations, these languages don’t always make it simple to create

interactive stories with different pathways and multiple outcomes. There were implemented several

tools for operating with narrative text, for example Inky editor [2].

These types of languages are used by people who like to engage in action completely, so the

aim is to please different groups of people, including: young adults, gamers and virtual reality

enthusiasts. It should allow users to easily create branching story paths, define character actions,

dialogue, and create different outcomes based on user input. This language should also be easy to

learn, so that even people who have no experience with programming can use it to create compelling

interactive stories.

mailto:denis.prodan@isa.utm.md

Technical Scientific Conference of Undergraduate, Master, PhD students, Technical University of Moldova

Chisinau, Republic of Moldova, April 5-7, 2023, Vol. I

- 131 -

Language Overview

Interactive storytelling is a type of storytelling in which the reader or player actively shapes

the narrative. There are several fundamental structures that must be understood before developing a

program or domain-specific language (DSL) for interactive storytelling. The imperative model

specifies the sequence of events in the story as well as the conditions that must be met for certain

events to occur. The declarative model establishes the story's characters, settings, and objects, as well

as their relationships and interactions. The functional model may also be used to process and

manipulate data to determine the next steps in the narrative. Objects, variables, and collections are

the basic data structures in this type of DSL. Objects in the story represent characters, settings, and

objects, as well as their attributes and properties. Variables store and manipulate data, such as the

reader's choices and the narrative's current location. Collections group together related data, such as

a list of characters or potential story paths.

The user would typically use a combination of declarative and imperative syntax to control

the flow of the narrative, including branching structures to evaluate the reader's choices and actions

and looping structures to repeat a set of actions multiple times. This type of program or DSL requires

user input in the form of choices, interactions, and other types of user input from the reader or player.

The program would use this input to control the narrative's flow and manipulate data to update the

story's state based on the reader's choices. Reader choices, interactions, and inventory management

are some of the specific types of input that a program in this DSL may require.

User-generated content is another important type of input that a program in our DSL for

interactive storytelling may require. User-generated dialogue, character names, locations, and even

entire story paths are examples of this. User-generated content can add a high level of customization

and personalization to a story, making readers feel more connected and engaged with it. A program

the DSL may include various types of output in addition to reader input to improve the reader's

experience. Output could include, for example, dialogue, images, sound effects, and music. These

elements can aid in the creation of a more immersive and engaging storytelling experience, drawing

the reader deeper into the story.

Finally, a program or DSL for intuitively narrating would have to incorporate a wide run of

components and usefulness to form locks in and intelligently accounts that can adjust to the reader's

choices and activities. By combining revelatory and basic language structure, essential information

structures, control structures, and input/output usefulness, such a program might permit journalists

and engineers to make energetic, personalized stories that capture the creative ability and motivate

perusers to be dynamic members within the story.

Grammar

VN = {<program>, <var>, <knot>, <ID>, <content>, <text>, <goto>, <print>, ,

<choice>, <var_op>, <expr>, <int>, <str>, <value>, <var_name>, <knot_name>, <img_name>,

<option_text>, <EQ>, <LPAREN>, <RPAREN>, <LCURLY>, <RCURLY>, <GH>, <EXLAM>,

<IMG_NAME>, <INT>, <ID>, <WS>, <EOF>}

VT = {'EOF', '(', ')', '*', '=', '<', '>', '[', ']', '{', '}', '!', '+', '-', '/', '(', ')(', ')', '<', '>', '=', '[', ']', '!', a'{',

'}', ',', '.png', '.jpg', ‘0’..’9’, ‘a..z’, ‘A’..’Z’}
Table 1.

Meta Notation

Notation Meaning

<foo> means foo is a nonterminal

foo foo in bold means foo is a terminal

x* zero or more occurrences of x

x+ zero or more occurrences of x

| separates alternatives

→ derives

Conferinţa Tehnico-Ştiinţifică a Studenţilor, Masteranzilor și Doctoranzilor, Universitatea Tehnică a Moldovei

Chișinău, Republica Moldova, 5-7 aprilie 2023, Vol. I

- 132 -

<program>→ (<var>)* <knot>+ EOF

<knot> → <ID> '{' <content>* '}'

<var> → <var_name> '=' <value>

<value>→ <int>|<str>

<int>→<INT>

<str>→'"'(<ID>|<INT>)*'"'

<content>→ <text>

 | <goto>

 | <print>

 |

 | <choice>

 | <var_op>

<var_op> : '[' <var_name> '=' <expr> ']'

<expr>: <expr> ('*'|'/') <expr>

 | <expr> ('+'|'-') <expr>

 | <int>

 | '(' <expr> ')'

 | <str>

 | <var_name>

<goto> → '(' <knot_name> ')'

<print> → '(''(' <var_name> ')'')'

 →'(''!' <img_name> ')'

<choice>→ '(' '(' <pair>* ')'')'

<pair>→'!'<option_text> <goto>

<option_text>→ (<ID>|<INT>)*

<knot_name>→ <ID>

<var_name>→<ID>|<INT>

<img_name>→<IMG_NAME>

<text>→ <ID>|<INT>;

<EQ> → '='

<LPAREN> → '('

<RPAREN> → ')'

<LCURLY> → '{'

<RCURLY> → '}'

<GH>→'"'

<EXLAM>→ '!'

<IMG_NAME>→ <ID> '.png'| <ID> '.jpg'

<INT> → [0-9]+

<ID>→ [a-zA-Z_][a-zA-Z_0-9]*

<WS>→ [\t\n\r\f]+ -> skip

Parsing Tree

 A parsing tree or concrete syntax tree is an ordered, rooted tree that represents the syntactic

structure of a string according to some context-free grammar. The term parse tree itself is used

primarily in computational linguistics. In theoretical syntax, the term syntax tree is more common

[3]. For the following code snippet, the corresponding parse tree was generated (Fig. 1):

Technical Scientific Conference of Undergraduate, Master, PhD students, Technical University of Moldova

Chisinau, Republic of Moldova, April 5-7, 2023, Vol. I

- 133 -

myvar="hello world"

second=12

f {

 ce faci132

 (y2)

 ((j))

 (!car.jpg)

 ((!what are you doing (y2)

 !here (y4)))

 }

y{

hi io hi

}

Figure 1. Parse Tree

Conclusions
Domain Specific Language can be useful for different tasks, purposes and people. The

difference between Interactive storytelling DSLs and other programming languages is that they must

cope with outcomes, branches and characters. These notions are naturally understood by humans, but

can be complicated to be transposed into code. This article introduces a new DSL concept, which

develops the idea of a more friendly markup language for interactive storytelling.

References

1. VOELTER, M. DSL Engineering: Designing, Implementing and Using Domain-Specific

Languages. Germany, 2013.

2. Writing web-based interactive fiction with ink, [online]. [accessed 05.03.2023]. Available:

https://www.inklestudios.com/ink/web-tutorial/.

3. Compilers: Principles, Techniques, and Tools [online]. (accessed 05.03.2023]. Available:

https://en.wikipedia.org/wiki/Compilers:_Principles,_Techniques,_and_Tools#cite_note-1

https://www.inklestudios.com/ink/web-tutorial/
https://en.wikipedia.org/wiki/Compilers:_Principles,_Techniques,_and_Tools#cite_note-1

