
Conferinţa Tehnico-Ştiinţifică a Studenţilor, Masteranzilor și Doctoranzilor, Universitatea Tehnică a Moldovei

Chișinău, Republica Moldova, 5-7 aprilie 2023, Vol. I

- 166 -

DOMAIN SPECIFIC LANGUAGE FOR PETRI NETS

Maxim CERNETCHI1, Corneliu NASTAS1,
Alexandr CARA1, Vladislav CRUCERESCU1

1Department of Software and Automation Engineering, group FAF-212, Faculty of Computers, Informatics and

Microelectronics, Technical University of Moldova, Chisinau, Moldova

*Corresponding author: Cernetchi Maxim, maxim.cernetchi@isa.utm.md

Scientific coordinator: Irina Cojuhari, conf. univ., dr., DISAa

Abstract. This scientific paper presents the development of a Domain Specific Language (DSL) for

Petri nets, a formalism used for modeling concurrent systems. The DSL provides an intuitive syntax

for modeling Petri nets, which enables domain experts to design and analyze complex systems

without the need for formal training in the underlying theory. The paper outlines the syntax and

semantics of the DSL and demonstrates its applicability through a set of case studies. The results

show that the DSL improves the productivity and efficiency of the modeling process and makes the

analysis of Petri nets more accessible to a wider audience. The paper concludes with a discussion of

the benefits and limitations of the DSL and its potential for future research and development in the

field of Petri nets.

Keywords: Petri Nets, transitions, places, token, dsl.

 Introduction

Petri Nets are a powerful mathematical tool used to model complex systems and processes

[1]. They provide a graphical representation of a system's state and its transitions, making them an

ideal choice for modeling a wide range of scenarios. However, creating and analyzing Petri Nets can

be a time-consuming and error-prone process, especially for large and complex systems. To overcome

this challenge, Domain-Specific Languages (DSLs) can be used to provide a more efficient and

convenient way to work with Petri Nets. A DSL is a programming language that is tailored to a

specific domain, making it easier to express domain-specific concepts and operations. In this context,

creating a DSL for Petri Nets can simplify the process of modeling, simulating, and analyzing Petri

Nets, improving both the accuracy and the speed of the analysis. This can have significant benefits in

areas such as manufacturing, logistics, and systems engineering, where the use of Petri Nets is

common. In this article, we will explore the process of creating a DSL for Petri Nets, discussing the

benefits of this approach and providing practical examples to illustrate its usage.

Domain analysis
Petri Nets are a mathematical modeling language used to represent and analyze the behavior

of discrete systems. Petri Nets are graphical representations of the interactions between different

components in a system and provide a visual representation of the underlying relationships between

states and transitions.

Key concepts and principles:

Petri Nets are a graphical modeling language used to represent and analyze the behavior of

discrete systems. The key concepts and principles of Petri Nets include:

1. Places: places represent the components of a system, such as resources, queues, or

intermediate stages of a process. They are represented by circles in a Petri net diagram.

2. Transitions: transitions represent events or actions that change the state of the system. They

are represented by rectangles in a Petri net diagram.

mailto:maxim.cernetchi@isa.utm.md

Technical Scientific Conference of Undergraduate, Master, PhD students, Technical University of Moldova

Chisinau, Republic of Moldova, April 5-7, 2023, Vol. I

- 167 -

3. Tokens: tokens are used to represent the presence of a resource or the completion of an

event. Tokens are represented by dots in a Petri net diagram and are placed in places.

4. Arcs: arcs represent the relationships between places and transitions. They are represented

by directed lines connecting places to transitions. Inbound arcs (place to transition) indicate the input

required for a transition to fire, while outbound arcs (transition to place) indicate the output produced

when a transition fires.

5. Firing: firing is the process by which a transition changes the state of the system by

consuming tokens from input places and producing tokens in output places. A transition can only fire

if there are enough tokens in its input places and enough free space in its output places.

6. State: the state of a Petri net is represented by the distribution of tokens in the places. A

Petri net can be in multiple states at the same time, representing different scenarios or parallel

processes.

7. Reachability: reachability is the property of a Petri net that allows for the analysis of the

possible sequences of transitions that can lead to a particular state. This property is useful for verifying

the behavior of the system and for analyzing the impact of changes to the system.

8. Boundedness: boundedness is the property of a Petri net that ensures that the number of

tokens in a place that remains within a specified range. This property is important for ensuring the

stability and reliability of the system.

These are the key concepts and principles of Petri Nets. Understanding these concepts is

essential for effectively using Petri Nets to model and analyze discrete systems.

Tools and techniques:

There are several tools and techniques that are commonly used in the analysis and design of

systems modeled with Petri Nets. Some of the most important tools and techniques include:

1. Modeling and simulation: Petri Nets can be used to create models of systems, which can

then be simulated to visualize and analyze the behavior of the system.

2. State space analysis: Petri Nets can be analyzed to determine the number of reachable states,

the number of transitions between states, and other properties of the system. This analysis is useful

for verifying the behavior of the system and for analyzing the impact of changes to the system.

3. Verification and validation: Petri Nets can be used to verify and validate system models by

checking the consistency and completeness of the model and by comparing the behavior of the model

with the behavior of the real system.

4. Performance analysis: Petri Nets can be used to analyze the performance of systems by

calculating various performance metrics, such as response time, throughput, and utilization.

5. Control and optimization: Petri Nets can be used to control and optimize systems by

determining the optimal policies for controlling the transitions and by finding the optimal settings for

the parameters of the system.

These are some of the most important tools and techniques for Petri Nets. The choice of tool

or technique will depend on the specific requirements of the system being modeled and the goals of

the analysis.

Applications and use cases:

Petri Nets have a wide range of applications and use cases in various domains, including but

not limited to:

1. Manufacturing and production: Petri Nets can be used to model and analyze the behavior

of production systems, such as assembly lines, and to optimize the production process.

2. Computer networks: Petri Nets can be used to model and analyze the behavior of computer

networks, such as communication protocols and data flow, and to optimize the performance of the

network.

Conferinţa Tehnico-Ştiinţifică a Studenţilor, Masteranzilor și Doctoranzilor, Universitatea Tehnică a Moldovei

Chișinău, Republica Moldova, 5-7 aprilie 2023, Vol. I

- 168 -

3. Software engineering: Petri Nets can be used to model and analyze the behavior of software

systems, such as workflow systems and user interfaces, and to optimize the design and

implementation of the software.

4. Business process modeling: Petri Nets can be used to model and analyze the behavior of

business processes, such as supply chain management and customer service, and to optimize the

performance of the processes.

5. Healthcare: Petri Nets can be used to model and analyze the behavior of healthcare systems,

such as patient flow and resource utilization, and to optimize the delivery of care.

6. Transportation: Petri Nets can be used to model and analyze the behavior of transportation

systems, such as air traffic control and traffic flow, and to optimize the performance of the

transportation system.

These are just a few examples of the wide range of applications and use cases for Petri Nets.

The versatility of Petri Nets makes them suitable for modeling and analyzing a wide range of discrete

systems in various domains.

Grammar and Language Design.
Grammar refers to the set of rules governing the structure of a language, including the way

words are formed, combined, and used to convey meaning. It encompasses everything from the parts

of speech and their functions to sentence structure and punctuation.

The language design started from identifying what the DSL language can and must do. We

identified the basic rules for the petri Nets:

1. Petri Nets have transitions and places

The syntax for this would be simple instantiation:

place p;

 place p1, p2, p3;

 tran t;

 tran t1, t2, t3;

Where pos, tran is the datatype of the variable. Notice that it uses semicolons to represent the end of

the declaration.

2. The places’ state describes the amount of token it has, it also has a token maximum capacity

which can be finite or infinite.

This can be done with this simple representation:

 place p;

 p.amm = 3;

 p.cap = 9;

The token amount of the place p is 3, whilst its maximum capacity is 9. The default quantity for the

token amount is zero, whilst for the maximum capacity is infinity.

3. Transitions and places are connected through inbound and outbound arcs:

Transitions and places can connect with multiple places and transitions.

 place p, p1, p2, p3;

 tran t, t1, t2;

 t.in = {p1, p2};

 t.out = {p3};

 p.in = {t1, t2};

 p.out = {t};

The inbound arcs for the transition t, connect it to p1 and p2, whilst the outbound arc connects it to

p3. p is connected to t1 and t2 with outbound arcs, which should not be confused with the syntax p.in.

For simplicity, it means whether the arrow in the graphical representation is pointing towards the

place or the transition. Notice that “p.out = {t}” connects itself to t which already has arcs. Rather

than overriding t’s arcs, it would add to the inbound arcs t already has, making t.in = {p, p1, p2}.

Technical Scientific Conference of Undergraduate, Master, PhD students, Technical University of Moldova

Chisinau, Republic of Moldova, April 5-7, 2023, Vol. I

- 169 -

4. Arcs have weights:

Inbound arcs’ weight attribute describes the amount of tokens it will consume during firing. Outbound

arcs’ attribute describes the amount of tokens it will produce during firing.

 place p1, p2, p3, p4;

 tran t1, t2;

 t1.in = {p1 : 2, p2};

 t2.out = {p3, p4};

 p3.in = {t1 : 3};

 p3.out = {t2};

The inbound arc “p1->t1” has the weight of 2. For the variables where there is no “: <number>”

notation, the weight is set to the default value 1.

 With this we designed the following grammar for the DSL:

Figure 1. Grammar Definition of DSL syntax

Example:

place p1, p2, p3;

tran r1, r2;

p1.amm = 4;

p2.amm = 3;

p3.cap = 5;

r.in = {p1 : 2, O2};

p3.in = {r1 : 2};

p3.out = {r2};

Conferinţa Tehnico-Ştiinţifică a Studenţilor, Masteranzilor și Doctoranzilor, Universitatea Tehnică a Moldovei

Chișinău, Republica Moldova, 5-7 aprilie 2023, Vol. I

- 170 -

Would generate something like this:

Figure 2. Petri Net representation

Conclusion.
Petri Nets are a valuable tool for modeling complex systems and processes, providing a

graphical representation of a system's state and its transitions. However, working with Petri Nets can

be a time-consuming and error-prone process, especially for large and complex systems. Creating a

Domain-Specific Language for Petri Nets can simplify the process of modeling, simulating, and

analyzing Petri Nets, improving both the accuracy and the speed of the analysis. By tailoring a

programming language to the specific needs of Petri Nets, a DSL can make it easier to express

domain-specific concepts and operations, allowing users to focus on the problem at hand instead of

the technical details of the modeling process. The benefits of using a DSL for Petri Nets are

significant, and can have a positive impact on fields such as manufacturing, logistics, and systems

engineering. As such, studying Petri Nets and exploring the creation of DSLs for them is an important

area of research, with the potential to improve the efficiency and effectiveness of many real-world

applications.

References:
1. Păstrăvanu O., Matcovschi M., Mahulea C. Aplicații ale rețelelor Petri în studierea

sistemelor cu evenimente discrete. Iași: Editura Gh. ASACHI , 2002.

