
Conferinţa Tehnico-Ştiinţifică a Studenţilor, Masteranzilor și Doctoranzilor, Universitatea Tehnică a Moldovei

Chișinău, Republica Moldova, 5-7 aprilie 2023, Vol. I

- 228 -

MODELING AND SIMULATION OF A K-MEANS CLUSTERING

ALGORITHM IN MATLAB AND PYTHON

Ștefana DUȚĂ1, Laura-Elena DOROBANȚU2,

Dan-Gabriel RADU3

1Department of Information and Computer Systems Engineering, 411 IISC, Faculty of Electronics, Telecommunications

and Information Technology, Politehnica University of Bucharest, Bucharest, Romania
2Department of Measurements, Electrical Devices and Static Converters, SIIM1, Faculty of Electrical Engineering,

Politehnica University of Bucharest, Bucharest, Romania

3Department of Electrical Engineering, IEIA2, Faculty of Electrical Engineering, Politehnica University of Bucharest,

Bucharest, Romania

*Corresponding author: Ștefana DUȚĂ, stefana.duta@stud.fim.upb.ro

Scientific coordinator: Felix Constantin ADOCHIEI, PhD, DMEDSC

Abstract. This paper presents an analysis of the K-means algorithm, a popular unsupervised learning

technique used for clustering data based on similar features. For this, the implementation and

performance of the K-means algorithm were compared in the Python and MATLAB programming

languages. In addition, modeling and simulation of the algorithm were performed to compare the

computation time and clustering quality in the two languages. The experimental results demonstrate

that the K-means algorithm is a powerful tool for data clustering and can be used effectively in

various applications. Although both Python and MATLAB are languages capable of efficiently

implementing the K-means algorithm, MATLAB resulted in a shorter computation time.

Keywords: K-means, MATLAB, Python, modeling.

 Introduction

Supervised and unsupervised learning are the two main categories of machine learning.

Supervised learning algorithms aim to learn a function that maps an input to its corresponding

output using available labeled data. Obtaining labeled data is often a challenging task in supervised

learning [1]. In situations where dataset labels are unavailable, unsupervised learning is typically

used. Clustering algorithms are used in this framework to group data points that have similar

characteristics, exploiting the underlying structure of the data distribution [2-3]. Unlike supervised

learning, where the algorithm has access to labeled data, unsupervised learning algorithms do not

have prior knowledge of the actual labels of the dataset and instead draw conclusions from the data

itself [3-4]. The k-means algorithm is a widely used and popular clustering technique due to its ease

of implementation and low computational complexity. It is often applied to image compression,

where it can reduce the number of colors used to represent an image while maintaining its visual

similarity [5-8].

Fig. 1 depicts a typical K-means clustering procedure, where the input dataset is initially

represented in a 2D space, as shown in Fig. 1a. Following the K-means clustering process, which

involves setting the number of centroids to K=3, the resulting clustered dataset is presented in Fig.

1b. The K-means algorithm requires users to set the number of clusters and initialize the centroids

randomly, but this can lead to poor performance due to the dependence on the initial selection of

clusters. This issue is more pronounced for large datasets, and determining the optimal number of

clusters is a complex task [9]. Another significant limitation of the algorithm is the use of Euclidean

distance as a similarity measure, which restricts its ability to detect clusters of non-standard shapes

and makes detecting overlapping clusters challenging.

mailto:stefana.duta@stud.fim.upb.ro

Technical Scientific Conference of Undergraduate, Master, PhD students, Technical University of Moldova

Chisinau, Republic of Moldova, April 5-7, 2023, Vol. I

- 229 -

Fig. 1. The K-means clustering algorithm is depicted in (a) with randomly distributed datasets,

followed by (b) the identification of the closest centroid for each of the three classes [8]

The K-means clustering algorithm is a heuristic iterative process that can be broken down into

three main steps, as described by [7]:

a) Initialization involves setting the central points with a given number of K clusters.

b) The algorithm then assigns all data points to one of the K clusters based on the current

centroids.

c) The centroids are then updated based on the newly formed clusters.

By repeating steps b) and c) over several iterations, the K-means algorithm eventually

converges and can effectively detect ball-shaped or spherical clusters. However, this is limited using

the Euclidean metric as a distance measure [8, 10].

Fig. 1.2 presents the steps of a K-means algorithm.

Fig. 2. The K-means algorithm is illustrated in the following steps: (a) A two-dimensional input dataset

with three clusters. (b) Selection of three seed points as cluster centers, followed by the initial

assignment of the data points to these clusters. (c) & (d) Intermediate iterations involving the updating

of cluster labels and their centers. (e) The final clustering obtained by the K-means algorithm at

convergence [11].

In the K-means algorithm, the goal is to group n multidimensional data points in a given

dataset X into K categories. To achieve this, the Euclidean distance is utilized as the similarity index,

and the algorithm seeks to minimize the sum of squares of different types, referred to as the

"minimization" step. [10, 12]. This step is carried out according to Eq (1) [12]:

d = ∑ ∑||xi − uk ||
2

𝑛

𝑖=1

𝑘

𝑘=1

 (1)

Conferinţa Tehnico-Ştiinţifică a Studenţilor, Masteranzilor și Doctoranzilor, Universitatea Tehnică a Moldovei

Chișinău, Republica Moldova, 5-7 aprilie 2023, Vol. I

- 230 -

The variables used in the K-means algorithm are defined as follows: k represents the K cluster

centers, uk represents the k-th center, and xi represents the i-th point in the given dataset.

The solution of center uk is shown in Eq (2):

𝜕

𝜕𝑢𝑘
=

𝜕

𝜕𝑢𝑘
 ∑ ∑(xi − 𝑢𝑘)

2

𝑛

𝑖=1

𝑘

𝑘=1

= ∑2(𝑥𝑖 − 𝑢𝑘)

𝑛

𝑖=1

(2)

Modeling and Simulation
This paper compares the implementation and performance of the K-means algorithm in

Python and MATLAB d.

A. Data generating:

Random data are generated from three normal distributions with known parameters. First,

each class used several data points to study the algorithm’s computation time evolution. Next, the

data is divided into three classes and randomly mixed.

B. The starting assumption

The three starting points for the algorithm are set.

C. Setting the algorithm parameters.

An expected precision of 0.001 and a substantial error starting value of 10000 are chosen.

D. Expectation

The expectation is the first function, which associates the closest point to each center with its

cluster and handles updating the data labels according to the Euclidean distance.

E. Maximization

This function updates the center of the clusters according to the update of the labels in the

previous step by averaging the coordinates of the points in each class on each axis.

F. Error Update

At each iteration, the desired and the calculated error are compared. If the calculated one is

higher, it is updated with a new value calculated according to equation (1) presented in the previous

chapter.

This study uses an algorithm based on the K-means implementation developed by Reza

Ahmadzadeh, available in the GitHub repository at https://github.com/rezaahmadzadeh/K-means [13.

The presented algorithm was trained using a Lenovo device with an ADM Ryzen 5 3500U processor

and 8 GB RAM, using the Windows 11 64-bit operating system. The training process did not involve

the GPU.

Results

CASE I – 50 values for each class

Actual values of the centroids of the three classes:

• (4, 0); (0, 4); (-3, 3).

Initial guess values:

• (0, 0); (2, 2); (-1, -1).

Tab. 1 shows the running times for the two programming languages.

Table 1

Experimental Results with 50 values/class – Running Time

Running Time

(s)

MATLAB (4 iterations) Python (4 iterations) Python (2 iterations)

0.0025 0.0128 0.0149

Technical Scientific Conference of Undergraduate, Master, PhD students, Technical University of Moldova

Chisinau, Republic of Moldova, April 5-7, 2023, Vol. I

- 231 -

With the help of Python, a result can be reached with only two iterations, whereas in

MATLAB, a minimum of 4 iterations are required to achieve a minimum error value (0). The result

obtained after the same number of iterations for both programming languages, named after four

iterations, is also observed.

Fig. 3. Algorithm results: CASE I – up and CASE II- down. Python – left and MATLAB - right.

Dividing the data into the three classes and determining the centroids

CASE II – 50000 values for each class

Actual values of the centroids of the three classes:

• (4, 0); (0, 4); (-3, 3).

Initial guess values:

• (0, 0); (2, 2); (-1, -1).

Tab. 2 shows the running times for case II. With Python, a result can be reached with six

iterations, whereas in MATLAB, at least nine iterations are needed to get a minimum error value.

Table 2

Experimental Results with 50000 values/class – Running Time

Running Time

(s)

MATLAB (9 iterations) Python (6 iterations)

0.1940 33.7897

Experimental results show that MATLAB is faster than Python when implementing the K-

means algorithm. For example, the computation time in MATLAB was five times faster than in

Python when using a set of 50 values. Furthermore, it is found that if the number of data is increased

to 50000, MATLAB is 174 times faster than Python.

It was also found that the quality of the clustering results was similar in both languages, as

can be seen in Fig. 3.

Conferinţa Tehnico-Ştiinţifică a Studenţilor, Masteranzilor și Doctoranzilor, Universitatea Tehnică a Moldovei

Chișinău, Republica Moldova, 5-7 aprilie 2023, Vol. I

- 232 -

Conclusions
In conclusion, this paper compared the implementation and performance of the K-means

algorithm in Python and MATLAB programming languages. By evaluating the algorithm on a

generated data set, it was found that MATLAB is generally faster than Python in terms of computation

time. This is probably due to the optimized built-in functions and toolboxes in MATLAB, designed

explicitly for numerical computations and data analysis tasks.

However, it is worth noting that Python offers a vast ecosystem of libraries and tools that can

be used to implement the K-means algorithm and is more flexible in integrating with other systems.

In summary, both Python and MATLAB can be used to implement the K-means algorithm

and give accurate clustering results. However, MATLAB may be a better choice for tasks requiring

faster computation time, while for jobs requiring more flexibility and integration with other tools,

Python may be a better choice.

Bibliography

1. M. MOHRI, A. ROSTAMIZADEH, and A. TALWALKAR, “Foundations of machine

learning,” p. 486, 2012, Accessed: Jan. 18, 2023. [Online].

2. C. BISHOP, “Neural networks for pattern recognition,” 1995.

3. A. K. JAIN, M. N. MURTY, and P. J. FLYNN, “Data clustering,” ACM Computing Surveys

(CSUR), vol. 31, no. 3, pp. 264–323, Sep. 1999, doi: 10.1145/331499.331504.

4. M. AHMED, R. SERAJ, and S. M. S. ISLAM, “The k-means Algorithm: A Comprehensive

Survey and Performance Evaluation,” Electronics 2020, Vol. 9, Page 1295, vol. 9, no. 8, p.

1295, Aug. 2020, doi: 10.3390/ELECTRONICS9081295.

5. X. WAN, “Application of K-means Algorithm in Image Compression,” IOP Conf Ser Mater

Sci Eng, vol. 563, no. 5, Aug. 2019, doi: 10.1088/1757-899X/563/5/052042.

6. Y. ZHAO and X. ZHOU, “K-means Clustering Algorithm and Its Improvement Research,” J

Phys Conf Ser, vol. 1873, no. 1, Apr. 2021, doi: 10.1088/1742-6596/1873/1/012074.

7. X. G. LI, M. F. YAO, and W. T. HUANG, “Speech recognition based on k-means clustering

and neural network ensembles,” Proceedings - 2011 7th International Conference on Natural

Computation, ICNC 2011, vol. 2, pp. 614–617, 2011, doi: 10.1109/ICNC.2011.6022159.

8. H. LE MINH, T. SANG-TO, M. ABDEL WAHAB, and T. CUONG-LE, “A new

metaheuristic optimization based on K-means clustering algorithm and its application to

structural damage identification,” Knowl Based Syst, vol. 251, p. 109189, Sep. 2022, doi:

10.1016/J.KNOSYS.2022.109189.

9. A. M. IKOTUN, A. E. EZUGWU, L. ABUALIGAH, B. ABUHAIJA, and J. HEMING, “K-

means clustering algorithms: A comprehensive review, variants analysis, and advances in the

era of big data,” Inf Sci (N Y), vol. 622, pp. 178–210, Apr. 2023, doi:

10.1016/J.INS.2022.11.139.

10. A. SINGH, A. YADAV, and A. RANA, “K-means with Three different Distance Metrics,”

Int J Comput Appl, vol. 67, no. 10, pp. 13–17, Apr. 2013, doi: 10.5120/11430-6785.

11. A. K. JAIN, “Data clustering: 50 years beyond K-means,” Pattern Recognit Lett, vol. 31, no.

8, pp. 651–666, Jun. 2010, doi: 10.1016/J.PATREC.2009.09.011.

12. C. YUAN and H. YANG, “Research on K-Value Selection Method of K-Means Clustering

Algorithm,” J 2019, Vol. 2, Pages 226-235, vol. 2, no. 2, pp. 226–235, Jun. 2019, doi:

10.3390/J2020016.

13. “K-means/k-means.py at master · rezaahmadzadeh/K-means · GitHub.”

https://github.com/rezaahmadzadeh/K-means/blob/master/Python/k-means.py (accessed Jan.

19, 2023).

