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INTRODUCTION 
 

The governing equations at macroscopic level 

have more modifications. As a result, the analysis of 

behavior of structural model with infinite number of 

subelements is complicated. The analysis of 

behavior of material in function of exterior history is 

simplified in the one discreet model. 

 

 

1. CALCULUS OF ELASTICITY 
LIMITS OF SUBELEMENTS 

 

Let us examen the calculation scheme of 

subelements characteristics. The deviator modules of 

stress and strain tensor in k number subelement we 

note through kk , . The interaction among 

subelements is defines through relationship 
 

      N,...,,,i     ),(A ii 321          (1) 

 During analysis it is easy to replace stress 

through elastic strain relative to the elastic limit of 

the first subelement. These elastic strains will note 

through ie . The report among total strain at 

elasticity limiter of this subelement will note though

i . 

 In this case relationship (1) can be written 

under shape:                                                               

           N,...,,,i     ),(bee ii 321        (2) 

Strain diagram for this subelement is 

presented in figure 1. 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Strain diagram for subelement. 
 

In scleronome processes each subelement will 

be characterized though flow limit i  and its share 

in system - i . The relationships for respective 

characteristics at macroscopic level are presented as: 
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The characteristic diagrams for different 

subelements are presented in  figure 2.  

Further we establish the calculus relationships 

for elasticity limits and shares of subelements. In this 

purpose relation (1) will be written as: 
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                      bebe ii  .                          (5) 

The relationships among ie  and i  we 

establish in base of diagram which is presented in  

figure 3. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2. The characteristic diagrams for different 

subelements. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The dependence among stress and strain  

tensor deviator.  

 

 For i  and ie  the following relationships 

are obtained  
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In figure 4 the characteristic diagram at 

conglomerate level is presented (at macroscopically 

level). In „i” point the elasticity limite is reachen in 

subelement with number i. 
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Figure 4. 

 

 The subelements with ki   number are 

required in irreversible domain, but ki   number in 

reversible domain. From (5) relationship results that 

elasticity limit in k subelement obtained values  
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2. DETERMINATION OF ELEMNTS 
SHERES IN BASE OF 

CHARACTERISTIC DIAGRAM OF 
MATERIAL 

 

The elastic macroscopic strain will be equal 

with sum of elastic strains of all subelements  
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In the subelements which continuing to work 

in elastic domain strains are equal. The (7) 

relationship can be written as  
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Substituting (10), (7) in (9), we obtain 
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The (12) relationship can be presented as  
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We will replace in (13) relationship k though 

k+1, as a result we will obtain 
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 Subtract form (14) (13) 
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From (8) we obtain  
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Replace (16) in (15), we obtain 
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After one number of transformations we find 
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Replace in (18) k through k-1, we obtain 
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Subtract from (18) (19), we obtain 
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Using the relationships (20) şi (21) we can 

calculate the subelements characteristics in base of 

characteristic diagram of material at macroscopic 

level.  

 

3. CONCLUSIONS 

 

In base of (20), (21) relations the limits of 

elasticity and shares of subelements are determined 

in base of characteristic diagram of material. In 

established relationships for elements characteristics 

one single intern parameter appearing which 

characterizes the cinematic interactions among 

subelements. The method of calculation of this 

parameter will be specified in base of discordance 

principle.  
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