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Abstract. Nowadays, grapes represent the third most widely cultivated horticulture crop in 

the world. For the Republic of Moldova, grapes have been recognized as the most culturally 

important crop. About 70% of the total production of Moldovan grapes is processed in the 

wine industry, 30 % of which are by-products that tend to be not fully exploited, being 

frequently burned or landfilled. Due to its chemical composition, grape pomace is one type 

of agricultural waste that can be used to achieve sustainability in the food business by 

converting waste into useful resources. In this sense, the pomace chemical composition, with 

demonstrated antioxidant potential, is a viable source of biologically active compounds, as a 

cheap agricultural waste product, for the development of functional products. This paper is 

an overview of the characteristics and potential uses of wine industry waste, namely grape 

pomace and explores the implementation of eco-friendly technologies that have the 

potential to convert this perishable material into a unique ingredient, unveiling fresh 

opportunities for the grape pomace's utilization and consumption. 
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Rezumat. În zilele noastre, strugurii reprezintă a treia cea mai cultivată cultură horticolă din 
lume. Pentru Republica Moldova, strugurii au fost recunoscuți ca fiind cea mai importantă 
cultură culturală. Aproximativ 70% din producția totală de struguri moldovenești este 
procesată în industria vinicolă, dintre care 30% sunt produse secundare care tind să nu fie 
exploatate pe deplin, fiind frecvent arse sau depozitate. Datorită compoziției sale chimice, 
tescovina de struguri este un tip de deșeu agricol care poate fi folosit pentru a atinge 

durabilitatea în industria alimentară prin transformarea deșeurilor în resurse utile. În acest 
sens, compoziția chimică a tescovinei, cu potențial antioxidant demonstrat, este o sursă 
viabilă de compuși biologic activi, ca deșeu agricol ieftin, pentru dezvoltarea produselor 

funcționale. Această lucrare este o prezentare generală a caracteristicilor și potențialelor 
utilizări ale deșeurilor din industria vinicolă, și anume tescovina de struguri și examinează 
implementarea tehnologiilor ecologice care au potențialul de a transforma acest material 
perisabil într-un ingredient unic, dezvăluind oportunități noi pentru utilizarea și consumul 
tescovinei de struguri. 
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1. Introduction 

In accordance with the Sustainable Development Goals (SDGs) outlined in the United 

Nations' 2030 Agenda, which the Republic of Moldova seeks to align with through the 

discussion of the Environmental Strategy project for the years 2023-2030 [1], one of the 

major objectives is related to the management of sustainable resources and the reduction of 

environmental impact. This involves a significant decrease in waste production through 

prevention, reduction, recycling, and reutilization. In other words, it entails promoting 

recycling practices of materials such as packaging, agricultural by-products, and other waste 

generated in agro-industrial processes [2]. 

At the same time, the European Commission has adopted the sustainability agenda under the 

framework of the European Green Deal, and the Republic of Moldova, as a country aspiring 

to integrate into the European Union, has adopted and implemented a series of measures and 

policies in the field of environmental protection that reflect the principles and objectives of 

the European Green Deal. As a result, aspects such as Sustainable Agriculture and Circular 

Economy are incorporated into the legislation of the Republic of Moldova, encouraging 

sustainability in the agricultural sector and promoting waste reduction and material recycling [3-5]. 

According to several authors and statistics, around one third of the global food 

production generated by agri-food sector is lost or wasted during processes as handling, 

processing, transport and final consumption [6,7]. The significant impact of this waste on 

climate and environment change has been proven by many studies [8,9]. Taking all this into 

consideration, currently many researches are oriented towards the valorization and reuse of 

food waste in order to protect the environment and natural resources [10-12]. 

The Republic of Moldova has a long tradition in wine production, with roots stretching back 

hundreds of years. The wine sector has always been one of the main pillars of the Moldovan 

economy[13]. The favorable climatic conditions for the cultivation of vines make the vineyard 

area cover a significant part of the country's territory[14]. The Republic of Moldova is known 

for a multitude of native varieties of grapes, which are adapted to the climatic conditions 

specific to the region. Some of these varieties include: Rara Neagră, Feteasca Neagră, 
Feteasca Regală, Feteasca Albă, etc. Acording to Bondarciuc et al. (2018), there are 140,000 
hectares of grapevine plantings in the Republic of Moldova [15]. It is estimated that about 

70% of the grape production in the Republic of Moldova is used in winemaking, thus 

generating about 30% of their wine waste (20% pomace, up to 7% stalks and 5% wine lees). 

However, these particular waste parts can serve as the initial raw material for the ingredient 

production with a high concentration of biologically active compounds [16]. The 

development of biologically valuable foods and beverages based on secondary grape raw 

materials containing mineral substances, organic acids, polyunsaturated fatty acids, vitamins, 

amino acids, pectin substances, etc. is relevant within the context of the modern theory of 

positive nutrition [17]. The aim of this study is to characterise grape by-product and assess 

existing sustainable methods for its utilization. This iconic fruit, valued since ancient eras, 

can be consumed fresh or processed, yet its by-product could be harnessed as a unique food 

ingredient with untapped potential. The core concept is to make the most of this valuable 

source of bioactive compounds whenever possible. 
 

2. Grape By-product 

Grape by-product could be defined as the solid residue left over after processing 

grapes to make wine or juices, among other items. It mainly consists of grape skin, seeds, 

stems, and wine lees. Concerning the proximate composition of grape pomace (Table 1), the 
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main constituents are dietary fibre (grape skin and stems), lipids (seeds), polyphenols and 

minerals (Figure 1).  

Many researches have proven that grape pomace has health-promoting properties 

(Table 2) being classified as source of biologically active compounds [18-20]. The majority of 

compounds that exhibit antiradical activity are polyphenols, which are mainly located in skin, 

stems and seeds, thus most polyphenols are wasted after wine production, according to Moro 

et al. (2021) this waste can reach up to 70% from the total phenolic content [21]. Phenolic 

compounds found in grape pomace include phenolic acids, flavonoids, and proanthocyanidins 

[22]. These compounds exhibit antioxidant, antibacterial and cardioprotective activity 

[23,24]. Lachman et al. (2015) revealed that linoleic acid was most abundant in grape seed 

oil, its content ranging between 68.10 and 78.18 g/100 g oil, while the content of linolenic 

acid was insignificant (0.29 - 0.77 g/100 g oil) [25]. In the same regard, Martin et al. (2020) 

stated that the share of unsaturated fatty acids from grape seed oil is roughly 90% of the 

total fatty acid content [26].  
 

 
Figure 1. Grape by-product as a source of biologically active compounds [27].  

Created with BioRender.com 
 

Regarding fibre, many authors state that fibre have the highest share in the proximate 

composition grape pomace (60 - 90% of dry matter), the wide range in fibre content being 

due to variety, soil and clime condition [28–30]. According to Kunzek et al. (2002), there is 

an ideal fiber ratio, concerning soluble and insoluble fractions (1:3) [31]. In this sense, several 

studies showed that grape pomace is low in soluble fibre (around 15 % of total fibre amount) 

[29,32]. However, the higher insolubility of grape pomace fibre opens wide directions in 

developing functional food products.  
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Table 1 

Proximate composition of grape pomace, % dry matter (DM) 

Carbohydrates Protein Lipids Fibre Mineral Polyphenols Reference 

29.20±0.02 8.49±0.02 8.16±0.01 46.17±0.80 4.65±0.05 131±0.4 mg/100 g [33] 

1.34 – 55.77 
5.4 – 

12.3 
1.1 – 4.7 17.3 - 53.2 3.3 – 7.6 15.8 – 26.7 mg/g [29] 

19.68 13.8 4.21 51.38 5.55 21.6 – 42.4 mg/g [34] 

2.11 – 50.8 
5.3 – 

14.0 
4.8 – 9.5 

26.4 – 

59.0 
2.9 – 6.3 41.2 ± 1.1 mg/g [35] 

 

González-Centeno and collaborators [28] determined the configuration of the total 

dietary fibre of grape pomace indicating pectic substances (40 - 54 % of total dietary fiber) 

and Klason lignin (20 - 25 %) as principal components. In addition, the study of Deng et al. 

(2011) demonstrated that white grape pomace was significantly lower in dietary fibre (17.3 - 

28.0% DM) than red grape pomace (51.1 - 56.3%) [29]. 

Although preclinical research on the impact of grape pomace consumption on lipid 

metabolism, body weight, gastrointestinal health, glucose management and antioxidant 

activity has found positive effects (Table 2), it has mostly been conducted in animals (mice, 

rabbits or chickens) [36-40], while few human studies have explored the health benefits of 

consuming grape pomace. 

Table 2 

Review of the researches on the grape pomace effect on health 

Research characteristics Results Reference 

Male rats were fed with 

food comprising 15% grape 

pomace instead of starchy 

component. 

The presence of grape pomace (15%) in cholesterol 

diet (0.3%) produced a significant reduction in 

cholesterol and triacylglycerols in the rat liver and 

serum. 

[41] 

The antioxidant activity of 

pure phenolic compounds 

from wines and grapes was 

assessed, through the 

capacity of inhibition of in 

vitro oxidation of LDL 

particles. 

Wine and grape phenolic compounds inhibited the 

oxidation of LDL particles 
[40] 

Proanthocyanidin from of 

grape seeds, was tested for 

its anti-thrombotic effect 

using in vitro and in vivo 

induced thrombosis tests in 

the mouse carotid artery. 

It was shown that grape seed procyanidins, when 

administered intravenously (20 mg/kg body weight) 

or orally (2×200 mg/kg body weight), greatly 
inhibited the formation of laser-induced thrombus in 

the carotid artery of mice. 

[37] 

Researchers looked into 

how grape pomace and 

seed polyphenol extracts 

affected the gut 

microbiota's ability to 

recover in mice given a 

high-fat diet following 

treatment with an antibiotic 

cocktail. 

Compared to the spontaneous recovery group, grape 

pomace and seed extract improved the relative 

abundance of gut microbiota. The diversity of the 

gut microbiota was also significantly changed by 

grape pomace and seed extract. According to these 

results, grape polyphenol extracts play a significant 

role in the gut microbiota's ability to recover 

following treatment with antibiotics and high-fat 

diets. 

[42] 
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Continuation Table 2 

Mice were given a 

combination of the usual 

diet and a mix of grape skin 

and seeds powder, 14 days 

prior to the inoculation of 

Ehrlich ascites carcinoma 

cells. 

The growth of the tumor was tracked, and the effects 

of extracts from grape skin and seeds on apoptosis 

and the advancement of the cell cycle were 

assessed. The results showed that the diet 

supplementation with mixed seed and skin powders 

prevented tumor development in the case of 47% of 

mice inoculated with Ehrlich ascites carcinoma, in 

the same time a decrease in the tumor volume and 

weight by 93.9% and 86.3%, respectively was 

observed. 

[38] 

 

Based on the positive properties of grape pomace on human health, industry and 

scientists have formulated common objectives regarding the creation of new products 

fortified with grape skin or grape seeds powder in order to increase the biological value of 

food, Figure 2. 
 

 
Figure 2. Food products infused with grape skin components and their influence 

on human health, modified after [43]. 
Created with BioRender.com 

 

In the food industry, grape pomace and its constituents have traditionally been utilized 

in powdered form as a nutritional supplement in various foods due to their abundance in 

phenols, dietary fiber, and anthocyanins [44]. Through a comprehensive review of existing 

literature, grape pomace and its constituents have been extensively studied for their potential 

incorporation into a variety of foods including bread [45-48], confectionery [49-51], cookies 

[52-54], yogurt [55-57], ice cream [58-60], pasta [61-63], noodles [64], fruit candies [65-67], 

beverages [68-70] and more. Consequently, incorporating grape pomace into foods presents 

a two-sided outcome, yielding both advantageous and disadvantageous effects on the final 

products.  



 O. Ruseva, E. Covaliov, V. Reșitca, O. Deseatnicova, T. Capcanari, N. Suhodol 117 

Journal of Engineering Science  March, 2024, Vol. XXXI (1) 

2. Innovation for grape pomace recovery and extraction 

According to sustainable chemistry, food byproducts are a great source of bioactive 

substances [71]. The ease of enhancing the functionality of this raw material - that is, making 

the components that promote health more accessible - suggests that many transformation 

strategies might be applied. 

The nutritional and biological enhancement of food products from the use of by-

products is of great relevance due to the benefits of the compounds of these by-products for 

human health, the economy and the environment [72]. The primary goal of by-product 

recovery processes is to create new, valuable goods from natural resources while cutting 

down on waste production and adhering to Green Europe guidelines. Over the past 50 years, 

new technologies have been created, including pulsed electric fields, enzyme digestion, and 

ultrasound [39,73,74]. 

Da Rocha and collaborators [75] demonstrated that utilizing microwave-assisted 

extraction, employing citric acid solution as solvent system, proved to be a successful method 

for extracting bioactive compounds from grape pomace. Nevertheless, the levels of phenolic 

compounds and antioxidant activity were less than those achieved with comprehensive 

extraction employing methanol solution acidified with acid. 

Table 3 

Analytical extraction methods of grape pomace compounds  

Extraction 

Methodology 

Application Condition tested References 

Microwave 

EXTRACTION OF 

BIOACTIVE 

COMPOUNDS 

Solvent: 2 % citric acid solution. 

Microwave power: 600, 800 and 1,000 W. 

Extraction time: 5, 7 and 10 min. 

[75] 

EXTRACTION OF 

PHENOLICS 

COMPOUNDS 

Liquid/solid ratio: 50/1 mL/g.  

Solvent types: water or water:ethanol (1:1) 

solutions. 

Extraction temperature: 50 ⁰C. 

Microwave power: 200 W. 

Extraction time: 60 min. 

[76] 

PECTIN 

EXTRACTION 

Solvent: ultrapure (Milli-Q) water. 

pH: 1, 2 and 3.  

Solid–liquid ratio of 1:10 g/mL. 

Microwave power: 280, 420 and 560 W.   

Extraction time: 60, 90 and 120 s. 

[77] 

Ultrasound-

assisted 

extraction 

(UAE) 

Extraction of 

phenolic 

compounds 

Drying temperatures of 60, 65, 70, 75, 80, and 

85 ⁰C, air velocity of 1.2 m/s. 

Solvent types - EtOH:H2O ratios: 50:50, 70:30, 

MeOH:H2O ratio: 70:30. 

Liquid/solid ratio: 8/1 - 24/1 mL/g. 

Extraction temperature: 20 - 40 ⁰C. 

Sonication power: 130W  

Pulse duration: 5/15 - 2/1. 

[73] 

Extraction of 

pectin 

Liquid/solid ratio: 10/1.  

Extraction temperature: 35, 55, 75 ⁰C.  

Extraction time: 20, 40, 60 min. 

pH of the citric acid solution: 1, 1.5, 2. 

Sonication power: 140W. 

[78] 
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Continuation Table 3 

 Extraction of 

anthocyanins 

Solvent type: 50 % vol. ethanol–water mixture. 

Liquid/solid ratio: 40:1.  

Extraction temperature: 20, 45, 65 ⁰C.  

Extraction time: (5, 10, 15, 20, 25 and 30 min.  

Sonication power: 160W. 

Sonication time: 30 min. 

[79] 

Extraction of 

hemicelluloses 

Solvent type: 2M and 4 M KOH solution. 

Solid:liquid ratio: 1:50 g/mL. 

Extraction temperature: 20 ⁰C.  

Extraction time: 1, 2, 3, 4 and 5 h. 

Sonication power: 140 W. 

[80] 

Enzymatic 

Extraction of 

phenolics 

compounds 

Solvent: phosphate buffer saline, pH 7.3. 

Solid:liquid ratio: 1:9 g/mL. 

Enzymes: Cellulase and gluco-amylase. 

Temperature: 55 °C. 
Time: 24 h. 

[81] 

Extraction of 

phenolics 

compounds 

Enzyme: Pectinex 3XL, Pectinex Ultra SPL, 

Termamyl, Fungamyl, Pentopan 500BG [82] 

High 

hydrostatic 

pressure and 

enzymatic  

Extraction of 

phenolics 

compounds 

Pressure: 50, 100 and 200 MPa. 

Extraction time: 0, 5, 10, 15 and 30 min. 

Enzyme: Carboxymethylcellulase, β-

glucosidase, Polygalacturonase. 

Orbital agitation: 150 rpm. 

Incubation time: 2, 6, 24 h. 

Temperature: 24, 30 or 37 °C (depending on the 
used enzyme). 

[83] 

Supercritical 

CO2 

Extraction of 

anthocyanins 

Pressure: 100 bar. 

Extraction temperature: 95 °C. 
Extraction time: 30, 60, 90, 120, 150 and 180 

min. 

[84] 

Extraction of 

resveratrol 

Pressure: 100, 400 bar. 

Extraction temperature: 35, 55 ⁰C.  

Co-solvent: ethanol (5%). 

[85] 

EXTRACTION OF 

OLEANOLIC 

ACID 

Pressure: 25 - 35 MPa. 

Extraction temperature: 40 - 50 ⁰C.  

Co-solvent: ethanol (5%).  

[86] 

 

Drosou and collaborators [76] compared the effect of polyphenol extraction methods 

(using Soxhlet, microwave assisted and ultrasound assisted extraction). The water:ethanol 

extracts obtained through ultrasound extraction were found to be richest in phenolic 

compounds (up to 438984 ppm GAE in dry extract) with high Antioxidant activity. 

Furthermore, Spinei and Oroian [77] applied microwave extraction for pectin recovery from 

grape pomace and concluded that the ideal parameters for the extraction procedure involved 

a microwave power of 560 W, a pH level of 1.8, and a duration of 120 minutes. The obtained 

results suggest that grape pomace holds significant promise as a valuable pectin source, 

extractable through straightforward and rapid methods, while ensuring comparable quality 

to traditional pectin sources. Goula, Thymiatis and Kaderides [73] evaluated drying behavior 
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and ultrasound extraction of phenolic compounds from grape pomace and and expressed the 

combined effect of moisture content and temperature on effective diffusivity by an empirical 

model. The authors concluded that that employing ultrasound to extract phenolics yielded a 

maximum of 9.57 mg GAE/g of dry pomace within a 10-minute extraction period. In addition, 

Minjares-Fuentes and collaborators [78] reported the optimal studied conditions for 

ultrasound extraction of pectin. Therefore, parameters were established at a temperature of 

75 °C for 60 minutes employing a citric acid solution with a pH of 2.0, along with sonication 

power of 140 W. Specifically, pectic polysaccharides were primarily comprised of galacturonic 

acid units, accounting for less than 97% of the total sugars.  

Bonfigli and colleagues [79] conducted a study on anthocyanin extraction using both 

conventional and ultrasound-assisted techniques at temperatures of 25, 45, and 65 °C. The 
results indicated a higher efficiency of ultrasound-assisted extraction, with the maximum 

concentration of anthocyanins obtained through conventional extraction being 0.475 mg/mL 

(at 65 °C), while ultrasound-assisted extraction yielded a concentration of 0.479 mg/mL at 

the same temperatures. Additionally, approximately 80% of anthocyanins were extracted 

within the first 600 seconds using conventional methods, whereas ultrasound-assisted 

extraction recovered 90% of anthocyanins within the same timeframe. Another study of 

Minjares-Fuentes and collaborators [80] imply that ultrasound-assisted extraction may 

present a viable choice for extracting hemicellulosic polysaccharides from grape pomace on 

an industrial scale. The optimal conditions for maximizing the extraction yield of 

hemicelluloses and the levels of xyloglucans, mannans, and xylans were as follows: an 

extraction time of 2.6 hours, a solid-to-liquid ratio of 1:48 (w/v), and a KOH concentration of 

0.4M. These conditions resulted in a maximum extraction yield of approximately 7.9% for 

hemicelluloses, around 3.6% for xyloglucans, approximately 1.1% for mannans, and roughly 

1.2% for xylans. 

Enzymatic extraction has been utilised also for phenolic compounds extraction from 

grape pomace. Kabir et al. [81] found that enzymatic breakdowns, employing cellulase and 

gluco-amylase, were effective in extracting polyphenols from grape pomace. In addition, the 

cellulase treatment exhibited notably elevated levels of polyphenolic compounds in the 

Folin-Ciocalteu’s assay, as well as markedly enhanced reductive activities in DPPH radicals, 
in comparison to the gluco-amylase treated pomace. Ferri et al. [82] conducted a study with 

the aim of optimizing a two-stage enzymatic and solvent-based process to extract bioactive 

compounds from white grape pomace. In their research, they utilized six commercial enzymes 

(Pectinex 3XL, Pectinex Ultra SPL, Termamyl, Fungamyl, Pentopan, Celluclast) for the 

extraction of both wet and dry pomace, followed by ethanol extraction. The findings indicated 

that ethanol-based extraction of wet and dry pomace yielded higher amounts of phenols 

compared to water extraction, with observed variations in their compositions and 

bioactivities. 

Cascaes Teles et al. [83] conducted a study to evaluate the impact of enzyme-assisted 

extraction and high hydrostatic pressure on the retrieval of phenolic compounds from grape 

pomace. They applied these methods individually as well as in combination to the pomace. 

The results revealed that high hydrostatic pressure significantly enhanced the effectiveness 

of the enzymes used in extraction, increasing their activity by up to 16 times. Techniques 

incorporating high hydrostatic pressure were found to be more efficient compared to relying 

solely on enzyme-assisted extraction. Consequently, the findings suggest that employing 

high hydrostatic pressure could offer an efficient and cost-effective means of recovering 



120 Sustainable strategies for grape pomace valorisation  

Journal of Engineering Science  March, 2024, Vol. XXXI (1) 

phenolic compounds from grape pomace, particularly when compared to more complex and 

prolonged processes. 

Pazir et al. [84] investigated the use of supercritical carbon dioxide extraction for the 

retrieval of anthocyanins from grape pomace. Conditions were settled at 95 ◦C, whereas 

pressure was established at 100 bar. The evaluation of the total monomeric anthocyanin 

content and total antioxidant capacity was performed at the 30th, 60th, 90th, 120th, 150th, 

and 180th min. Since around 63% of the monomeric anthocyanin content in the red grape 

pomace samples was extracted by the end of the extraction process (180 min), while 47% 

was achieved within the initial 30 minutes, the authors conclude, that there is no need to 

continue the extraction beyond 90 minutes. 

Casas and collaborators [85] proposed supercritical carbon dioxide as a method for the 

extraction of resveratrol from grape components. The impact of varying pressure (100, 400 

bar), temperature (35, 55 °C), and the inclusion of a modifier (5% v/v ethanol) was assessed 

to determine the most effective method for extracting resveratrol. The most favorable 

outcomes, in mg resveratrol/g extractor, (5.97 in grape seeds, 1.12 in stems, 21.35 in grape 

skin, 10.73 in pomace) were observed when operating at high pressure (400 bar), low 

temperature (35 °C), and incorporating 5% v/v ethanol as a co-solvent. Chronopoulou and 

collaborators [86] investigated the application of supercritical CO2 extractions to obtain 

oleanolic acid from grape pomace and that this method effectively retrieved oleanolic acid 

from grape pomace samples, with an extraction yield comparable to established extraction 

techniques like Solid Liquid extraction, which can sometimes have drawbacks. 
 

3. Conclusions 

The grape stands as one of the primary crops on a global scale. Annually, the wine 

industry produces hundreds of tons of grape pomace, typically disposed of as waste. However, 

this by-product is recognized as a natural reservoir of bioactive compounds with significant 

potential health benefits. Employing eco-friendly technologies on grape by-products offers a 

fresh perspective for maximizing the value of grape pomace to preserve and enhance its 

functionality and nutritional properties. Various methodologies are explored to compare 

conditions and identify the primary target bioactive compounds. Following processes like 

enzyme-assisted extraction, supercritical fluids, microwaves, or ultrasound treatments, there 

appears to be a viable opportunity to convert this perishable material into a valuable source 

of health-enhancing compounds such as phenols, anthocyanins, and pectins. Consequently, 

the grape, with its historical significance, can be fully utilized, extending its potential to the 

often-overlooked grape by-product, thus transforming it into a newly recognized value-added 

product. 
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