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Abstract. This article explores models in Intelligent Transportation Systems for real-time 

traffic flow manageability, focusing on decision-making processes. It covers forecasting, 

planning, implementing, and controlling strategies to manage traffic flow and ease 

congestion. Traffic flow prediction models, like dynamic route guidance and traffic flow 

prediction, utilize historical data and real-time inputs for proactive decision-making. Traffic 

flow planning models, such as dynamic route guidance index and route efficiency factor, aid 

in route selection and signal timing optimization. In order to streamline the boundless 

complexity, the authors assume that it is effective to delineate the managerial capacity 

paradigm of intelligent transportation systems into the two separate scenarios of “stable and 

known situation” and “unstable and with large uncertainty situation”. The article proposes a 

hypothesis to improve the decision-making process in traffic flow. The distinction between 

these two situations is essential for the smooth running of the business and requires a 

thorough understanding of the traffic flow in real time, making decisions in intelligent 

transport systems in order to direct the traffic. The article focuses on data-driven decisions 

for smoother traffic flow. 
 

Keywords: road movement, live choice determination, smart transportation networks, enhancing 

efficiency, instantaneous data, unpredictability. 
 

Rezumat. Articolul explorează modele în sistemele inteligente de transport pentru 
gestionarea fluxului de trafic în timp real, concentrându-se pe procesele de luare a deciziilor.  

Sunt analizate strategiile de prognoză, planificare, implementare și control pentru a optimiza 
fluxul de trafic și a reduce congestionarea. Modelele de predicție a fluxului de trafic, cum ar 

fi ghidarea dinamică a rutei și predicția fluxului de trafic, utilizează date istorice și intrări în 
timp real pentru luarea deciziilor proactive. Modelele de planificare a fluxului de trafic, cum 

ar fi indicele dinamic de ghidare a rutei și factorul de eficiență a rutei, ajută la selectarea 
rutei și la optimizarea sincronizării semnalului. Pentru a eficientiza complexitatea infinită, 
autorii presupun că este rațională delimitarea paradigmei capacității manageriale a 
sistemelor de transport inteligente în cele două scenarii separate "situație stabilă și 
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cunoscută" și "situație instabilă și cu incertitudine mare". Articolul propune o ipoteză pentru 
îmbunătățirea procesului decizional în fluxul de trafic. Distincția dintre cele două 
circumstanțe este esențială pentru raționalizarea traficului și solicită o comprehensiune 
profundă a fluxului de trafic în timp real, precum și luarea deciziilor în sistemele de transport 
inteligente în vederea dirijării traficului, decizii bazate pe date pentru un flux mai fluid al 

traficului. 
 

Cuvinte-cheie: circulație rutieră, determinarea alegerii momentane, rețele inteligente de 
transport, creșterea eficienței, date instantanee, imprevizibilitate. 

 

…the critical scarce factor in decision-making 

 is not information but attention. 

What we attend to, by plan or by chance, 

is a major determinant of our decisions [1]. 

1. Introduction 

In this paper, we explore manageability within the context of real-time traffic flow 

control, with a focus on decision-making procedures. It acts as an extension of our prior 

articles [2-4].  

The adoption of smart transportation technologies has transformed how urban traffic 

is managed, offering dynamic solutions to alleviate congestion, enhance safety, and optimize 

resource utilization. A key aspect of ITS success lies in its capability to oversee traffic flow 

instantly and make knowledgeable choices by considering changing environmental factors 

and user needs. However, the complexity of modern transportation networks poses 

significant challenges to achieving seamless manageability and decision-making. In 

response, this study endeavors to develop prediction and decision-making models that 

address these challenges and contribute to the evolution of ITS. 

To formulate models for managing real-time traffic flow and decision-making in 

intelligent transportation systems, authors categorize situations into two groups: “situations 

are stable and known” and “unstable and with large uncertainty situations”.  

In this current paper, we will incorporate several expressions from our preceding 

article: "knowledge in decision making process", "stable and known situation", “unknown in 

decision making process”, "unstable and with large uncertainty situation" [1, pp. 84-85]. 

Applied to real-time traffic flow manageability and decision-making in intelligent 

transportation systems, the authors will consider the following definitions in this article: 

"knowledge in decision-making procedure" denotes the level of compliance with the actual 

circumstances, validated by evidence (verified through repeatable trials, observation, and 

quantification) and logical justifications, aiding in the attainment of planner’s objectives 

(rational management of traffic flow). "Unknown in decision making process" pertains to the 

forthcoming unforeseeable hazard associated with achieving the planner's aim, which may 

or may not materialize, yet is exceedingly challenging to foresee in advance. “Decision 

making” can be viewed (figuratively) as a place to anticipate, experiment, and devise fresh 

understanding during the planning phase and make decisions regarding the line of reasoning 

and action with the intention to control the traffic flow. "Stable and known situation " 

signifies a foreseeable future condition, where the planner is cognizant of all impending 

occurrences, the complete array of risks, the ramifications of all outcomes, and there exist 

methodologies for sound probability assessments and computations, all constituting a 

scenario characterized by epistemic assurance and understanding. "Unstable and with large 
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uncertainty situation" delineates an unforeseeable future condition, where the planner lacks 

knowledge regarding forthcoming events and there exists no means to gauge or compute the 

likelihood of such events. The content of the aforementioned definitions has been 

reformulated and adjusted for the current paper based on those in the previous article  

[1, pp. 84-85]. 
 

2. Materials and Methods 

The objectives of the study are to identify the dichotomous scenarios influencing the 

efficacy of Intelligent Transportation Systems and to identify models for real-time traffic flow 

manageability and decision-making in Intelligent Transportation Systems. 

In our investigation, we will utilize conventional components of manageability: 

forecasting, planning, organizing, implementation, controlling, decision-making. We devised 

operational tasks with a twofold strategy, in a segmented structure, integrating components 

that enhance oversight (via equations – from the angle of “knowledge in decision making 

process” and “stable and known situation") and aspects that hinder oversight (via descriptors 

– structure from the viewpoint of "unknown in decision making process" and "unstable and 

with large uncertainty situation"). Authors employ a streamlined method to outlined 

equations (most familiar and basic) considering the vast array of approaches, methods, 

protocols, and equations for each segmented component. 

A.1 Manageability as prognostication endeavor in Intelligent Transportation 

Systems from the standpoint of “knowledge in decision making process” and “stable and 

known situation" 

Forecasting plays a pivotal role in the management of real-time traffic flow within 

Intelligent Transportation Systems (ITS), particularly in scenarios characterized by stability 

and familiarity. By utilizing advanced forecasting models, ITS can predict upcoming traffic 

scenarios using past data, live sensor information, and environmental influences. This 

enables dynamic decision-making processes aimed at enhancing traffic flow manageability 

and optimizing resource allocation. In this section, we enter into forecasting methodologies 

tailored to scenarios where future events are stable and known, offering insights into dynamic 

route guidance, traffic signal optimization, and proactive resource allocation within the realm 

of ITS. Through the application of predictive formulas and optimization techniques, ITS can 

proactively address traffic challenges, ensuring efficient and safe mobility for all road users. 

Below are several of the frequently employed equations. 
 

A.1.1 Traffic Flow Prediction Models 

These models use historical traffic data, real-time sensor information, and weather 

data to predict future traffic condition. 
 

A.1.1.1 Dynamic Route Guidance. Navigation systems can recommend alternative routes 

based on predicted congestion.  
 

  𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜 =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑅𝑅𝑖𝑖)� ∑�𝐶𝐶𝑖𝑖𝑖𝑖 +  𝑇𝑇𝑖𝑖𝑖𝑖��, (1) 
 

where:  

Ropt is optimal route; 

Ri - available routes; 

Cij - travel cost on route i;  

Tij - estimated travel time on route i. 
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A.1.1.2 Traffic Flow Prediction: 
 

  𝑇𝑇𝐹𝐹𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑓𝑓(𝐻𝐻𝐻𝐻, 𝐶𝐶𝐻𝐻, 𝐶𝐶𝐶𝐶), (2) 
 

where:  𝑇𝑇𝐹𝐹𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝 is predicted traffic flow; 𝐻𝐻𝐻𝐻 - historical traffic data; 𝐶𝐶𝐻𝐻 - current traffic conditions; 𝐶𝐶𝐶𝐶 - external factors affecting traffic flow. 
 

A.1.1.3 Congestion Prediction: 
 

  𝐶𝐶𝐶𝐶𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐶𝐶𝐶𝐶𝑖𝑖) [∑ (𝐻𝐻𝑖𝑖𝑖𝑖)], (3) 
 

where:  𝐶𝐶𝐶𝐶𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝 is predicted congestion level; 𝐶𝐶𝐶𝐶𝑖𝑖 - potential route options; 𝐻𝐻𝑖𝑖𝑖𝑖 - degree of congestion on route 𝑎𝑎. 
 

A.1.2 Traffic Signal Optimization. Traffic lights can be adjusted in real-time to 

optimize traffic flow. 

A.1.2.1 Traffic Signal Optimization 
 

  𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑇𝑇𝑇𝑇𝑖𝑖) [ ∑ (𝐻𝐻𝑖𝑖𝑖𝑖] (4) 
 

where:  𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 is optimized traffic signal timing; 𝑇𝑇𝑇𝑇𝑖𝑖 - different signal timing options; 𝐻𝐻𝑖𝑖𝑖𝑖 - delay experienced by vehicles at signal 𝑎𝑎. 
A.1.2.2 Queue Length Prediction: 

 

  𝑄𝑄𝑄𝑄𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑓𝑓(𝑇𝑇𝑇𝑇, 𝑇𝑇𝐶𝐶𝐻𝐻, 𝐴𝐴𝐶𝐶) (5) 
 

where:  

 𝑄𝑄𝑄𝑄𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝 is predicted queue length; 𝑇𝑇𝑇𝑇 - traffic volume; 𝑇𝑇𝐶𝐶𝐻𝐻 - vehicle speed; 𝐴𝐴𝐶𝐶 - arrival rate of vehicles at intersection. 
 

A.1.2.3 Optimal Cycle Length Calculation: 
 

  𝐶𝐶𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜 =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐶𝐶𝑄𝑄𝑖𝑖) [ ∑ (𝑇𝑇𝑖𝑖𝑖𝑖] (6) 
 

where:  𝐶𝐶𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜 is optimal cycle length; 𝐶𝐶𝑄𝑄𝑖𝑖 - different cycle length options; 𝑇𝑇𝑖𝑖𝑖𝑖 - total delay experienced by vehicles during cycle 𝑎𝑎. 
 

These algorithms are essential for predicting traffic patterns and fine-tuning traffic 

signal timings within Intelligent Transportation Systems.  
 

A.1.3 Proactive Resource Allocation. Emergency services can be pre-deployed to areas 

with a high likelihood of accidents based on traffic patterns. 

A.1.3.1 Proactive Resource Allocation:  
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  𝐶𝐶𝑅𝑅𝐴𝐴 =  𝑓𝑓(𝑇𝑇𝑇𝑇,𝑇𝑇𝑄𝑄,𝑇𝑇𝑇𝑇,𝑊𝑊𝑇𝑇) (7) 
 

where:  𝐶𝐶𝑅𝑅𝐴𝐴 is proactive resource allocation; 𝑇𝑇𝑇𝑇 - traffic volume; 𝑇𝑇𝑄𝑄 - traffic queue length; 𝑇𝑇𝑇𝑇 - travel time; 𝑊𝑊𝑇𝑇 - waiting time at border crossings. 
 

A.1.3.2 Resource Utilization Optimization: 
 

  𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑅𝑅𝑅𝑅𝑖𝑖) [ ∑ (𝐶𝐶𝑖𝑖𝑖𝑖)] (8) 
 

where:  𝑅𝑅𝑅𝑅𝑅𝑅 is optimized resource utilization; 𝑅𝑅𝑅𝑅𝑖𝑖  - different resource allocation options; 𝐶𝐶𝑖𝑖𝑖𝑖 - cost associated with resource allocation option 𝑎𝑎. 
 

A.1.3.3 Border Crossing Time Prediction: 
 

  𝐵𝐵𝐶𝐶𝑇𝑇𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝  =  𝑓𝑓(𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇,𝑊𝑊𝑇𝑇),  (9) 
 

where:  𝐵𝐵𝐶𝐶𝑇𝑇𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝 is predicted border crossing time; 𝑇𝑇𝑇𝑇 - traffic volume; 𝑇𝑇𝑇𝑇 - travel time; 𝑊𝑊𝑇𝑇 - waiting time at border crossings. 
 

These formulas are instrumental in forecasting traffic flow and optimizing resource 

allocation in Intelligent Transportation Systems with a proactive approach based on 

“knowledge in decision making process” and “stable and known situation". 
 

A.2 Manageability as prognostication endeavor in Intelligent Transportation 

Systems from the standpoint of "unknown in decision making process" and "unstable and 

with large uncertainty situation" 

Traffic congestion plagues modern cities, and managing its ever-changing nature is a 

constant challenge. Intelligent Transportation Systems (ITS) offer a promising solution, but 

real-time decision-making requires robust forecasting techniques that can handle the 

inherent uncertainties. This paper delves into forecasting for ITS, specifically focusing on 

situations with limited information ("unknown in decision making") and highly dynamic traffic 

flow ("unstable and with large uncertainty"). We explore how forecasting models can be 

adapted to navigate these complexities and contribute to improved traffic flow 

manageability. 

The work [5] discusses the utilization of Intelligent Transportation Systems (ITS) for 

predicting traffic flow and speed, as well as classifying different traffic situations. It highlights 

the importance of understanding traffic patterns and making informed decisions to manage 

traffic effectively. The paper aims to explore the state-of-the-art methods employed in ITS 

for traffic prediction and classification, indicating a focus on forecasting future traffic 

conditions. Additionally, it mentions examining preprocessing techniques and evaluation 

metrics, which are crucial aspects of forecasting accuracy and performance assessment. 
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The paper [6] focuses on the development of a short-term traffic flow prediction model 

using deep learning techniques, specifically the long short-term memory (LSTM) network. It 

highlights the limitations of traditional prediction methods in accurately forecasting short-

term traffic flow due to the complexity of influencing factors. The work proposes a solution 

by leveraging LSTM networks and variational modal decomposition to address the modal 

aliasing problem. The experimental results indicate that the proposed method achieves good 

prediction accuracy for short-term traffic flow. 

The research [7] primarily focuses on the development and implementation of a k-

nearest neighbor (KNN) model for short-term traffic flow prediction. It outlines the 

establishment of a prediction system based on KNN in three main aspects: the historical 

database, search mechanism and algorithm parameters, and prediction plan. The 

preprocessing of original data and standardization of effective data are discussed to improve 

prediction accuracy. The research highlights the development of a short-term traffic 

prediction model using KNN nonparametric regression in the Matlab platform, utilizing traffic 

flow data from Shanghai urban expressway sections. The comparison of different KNN models 

and the analysis of prediction reliability are also mentioned. 

The study [8] mainly focuses on the development and implementation of a novel 

model, Attention Based Spatio-Temporal Graph Convolutional Network considering External 

Factors (ABSTGCN-EF), for multi-step traffic flow prediction. It acknowledges the importance 

of accurate multi-step traffic flow prediction in improving traffic network operational 

efficiency within intelligent transportation systems. The study highlights the complexities of 

traffic flow data and existing prediction methods, mainly achieved through a combination of 

Graph Convolutional Network (GCN) and recurrent neural network. The proposed model aims 

to address the challenges of multi-step prediction errors accumulation and the need for 

multiple sampling sequences, considering the spatio-temporal correlation of traffic flow and 

external factors like daytime, weekdays, and traffic accidents. The experimental results on 

public datasets demonstrate the effectiveness of the proposed ABSTGCN-EF model, achieving 

higher prediction performance compared to state-of-the-art baselines. 

Traffic flow prediction models (TFPMs), despite significant advancements, operate 

within an inherently unstable and highly uncertain environment. This section details various 

elements that are potentially unknown during forecasting and can significantly affect the 

manageability of an organization relying on such models. These elements contribute to the 

inherent limitations of current prediction capabilities. 

Condensing cited references as well as our perspective on prediction, we compile a 

concise inventory of elements that might elude detection during forecasting and could 

diminish the controllability of an entity: 

A.2.1 Unforeseen Changes in Traffic Patterns. Construction projects, road closures, or 

detours can significantly alter established traffic patterns. These events often occur with 

limited prior warning, hindering the ability of TFPMs to adapt their predictions. 

A.2.2 Unexpected Incidents. Accidents, vehicle breakdowns, or other unforeseen events 

can create bottlenecks and disrupt traffic flow. The stochastic nature of these incidents makes 

them challenging to incorporate into models. 

A.2.3 Sudden Shifts in Weather Conditions. Adverse weather conditions like rain, snow, 

or fog can significantly affect road conditions and driver behavior. The dynamic nature of 

weather patterns presents a significant challenge for TFPMs. 
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A.2.4 Historical Data Inaccuracy. The accuracy of TFPMs relies heavily on the quality 

of historical traffic data. Errors or inconsistencies in historical data can lead to flawed 

predictions and hinder the ability of organizations to proactively manage traffic flow. 

A.2.5 Unaccounted for Driver Behavior. TFPMs often struggle to capture the nuances of 

human behavior. Variations in driver route preferences, risk tolerance, and adherence to 

traffic regulations can significantly impact traffic flow in ways that are difficult to model. 

A.2.6 Emergence of New Transportation Technologies. The introduction of autonomous 

vehicles, ride-sharing services, or other novel transportation technologies can disrupt 

established traffic patterns and render existing TFPMs obsolete. 

A.2.7 Unpredictable Events. Events like protests, sporting events, or large gatherings 

can cause temporary spikes in traffic volume or disruptions in flow patterns. The 

unpredictable nature of these events makes them challenging to account for in TFPMs. 

A.2.8 Urban Development and Infrastructure Changes. Changes in urban infrastructure, 

such as new road construction or modifications to existing ones, can significantly alter traffic 

flow patterns. The dynamic nature of urban development necessitates continuous model 

updates to maintain accuracy. 

A.2.9 Limited or Unreliable Sensor Data. The accuracy of Traffic Flow Prediction Models 

(TFPMs) typically depends on access to real-time traffic information from sensors installed in 

roadways. Nonetheless, sensor failures, communication issues, or inadequate sensor 

distribution can greatly reduce the precision of these predictions. 

A.2.10 External Factor Omissions. TFPMs may not account for the influence of external 

factors such as road maintenance activities, special events, or planned outages. These 

omissions can lead to inaccurate predictions and hinder the ability of organizations to 

manage traffic efficiently. 

In conclusion, TFPMs offer valuable insights for traffic management, but their 

effectiveness is significantly compromised in situations characterized by instability and high 

uncertainty. Recognizing and addressing the limitations of TFPMs is crucial for organizations 

to maintain a robust and adaptable approach to traffic management in an ever-evolving 

transportation landscape. 
 

B.1 Manageability as planning at strategizing endeavor in Intelligent 

Transportation Systems from the viewpoint of “knowledge in decision making process” and 

“stable and known situation" 

Numerous distinct equations can be employed to assist manageability of Intelligent 

Transportation Systems that might be beneficial to assess the planning of traffic flow.  
 

B.1.1 Traffic Flow Planning Models in Intelligent Transportation Systems from the 

perspective of Planning 

B.1.1.1 Dynamic Route Guidance Index (DRGI): 
 

  DRGI  =  ∑(𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎𝐶𝐶𝑎𝑎𝑖𝑖 / 𝐻𝐻𝑎𝑎𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝐷𝐷𝐶𝐶𝑖𝑖) (10) 
 

where: 𝐻𝐻𝑅𝑅𝐷𝐷𝐷𝐷 is dynamic Route Guidance Index; 𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎𝐶𝐶𝑎𝑎𝑖𝑖 - level of congestion on route 𝑎𝑎; 𝐻𝐻𝑎𝑎𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝐷𝐷𝐶𝐶𝑖𝑖 - distance of route 𝑎𝑎. 
 

B.1.1.2 Route Efficiency Factor (REF): 
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  𝑅𝑅𝑅𝑅𝐹𝐹  =  ∑(𝑇𝑇𝑎𝑎𝑎𝑎𝑇𝑇𝐶𝐶𝑇𝑇 𝐶𝐶𝑎𝑎𝑎𝑎𝐶𝐶𝑖𝑖/ 𝐻𝐻𝑎𝑎𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝐷𝐷𝐶𝐶𝑖𝑖) (11) 
 

where: 

REF is Route Efficiency Factor; 𝑇𝑇𝑎𝑎𝑎𝑎𝑇𝑇𝐶𝐶𝑇𝑇 𝐶𝐶𝑎𝑎𝑎𝑎𝐶𝐶𝑖𝑖 - travel time on route 𝑎𝑎; 𝐻𝐻𝑎𝑎𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝐷𝐷𝐶𝐶𝑖𝑖 - distance of route 𝑎𝑎. 
 

B.1.1.3 Optimal Route Selection Criteria: 
 

  ORSC  =  argmin(∑(𝑇𝑇𝑎𝑎𝑎𝑎𝑇𝑇𝐶𝐶𝑇𝑇_𝑇𝑇𝑎𝑎𝑎𝑎𝐶𝐶𝑖𝑖)) (12) 
 

where:  𝑅𝑅𝑅𝑅𝑇𝑇𝐶𝐶 is Optimal Route Selection Criteria; 𝑇𝑇𝑎𝑎𝑎𝑎𝑇𝑇𝐶𝐶𝑇𝑇_𝑇𝑇𝑎𝑎𝑎𝑎𝐶𝐶𝑖𝑖 - travel time route 𝑎𝑎. 
 

B.1.1.4 Dynamic Route Adjustment Algorithm: 
 

  DRAA  = min(∑(𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎𝐶𝐶𝑎𝑎 𝑖𝑖)) (13) 
 

where: 𝐻𝐻𝑅𝑅𝐴𝐴𝐴𝐴 is Dynamic Route Adjustment Algorithm; 𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎𝐶𝐶𝑎𝑎 𝑖𝑖 - level of congestion on route 𝑎𝑎. 
 

B.1.1.5 Route Optimization Heuristic: 
 

  ROH = argmin(∑(𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑖𝑖 * 𝐻𝐻𝑎𝑎𝐶𝐶𝐶𝐶𝑖𝑖)) (14) 
 

where: 𝑅𝑅𝑅𝑅𝐻𝐻 is Route Optimization Heuristic; 𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑖𝑖  - level of congestion on route 𝑎𝑎; 𝐻𝐻𝑎𝑎𝐶𝐶𝐶𝐶𝑖𝑖 - distance of route 𝑎𝑎. 
 

These algorithms assist in the planning stage of Intelligent Transportation Systems 

by dynamically directing vehicles along the most efficient routes according to real-time 

traffic conditions. By taking into account elements like congestion levels, travel times, and 

distances, planners can optimize route choices and improve overall traffic flow efficiency. 
 

B.1.2 Traffic Signal Optimization in Intelligent Transportation Systems from the 

perspective of Planning 

B.1.2.1 Signal Cycle Length Adjustment: 
 

  𝑇𝑇𝐶𝐶𝑄𝑄𝐴𝐴 =  (𝐷𝐷𝑇𝑇𝑇𝑇) / (𝐴𝐴𝑇𝑇𝐻𝐻)  (15) 
 

where: 𝑇𝑇𝐶𝐶𝑄𝑄𝐴𝐴 is Signal Cycle Length Adjustment; 𝐷𝐷𝑇𝑇𝑇𝑇 - the desired time for vehicles to traverse the intersection (Ideal Travel 

Time); 𝐴𝐴𝑇𝑇𝐻𝐻 - the average delay experienced by vehicles at the intersection (Average 

Vehicle Delay). 
 

B.1.2.2 Green Time Allocation Ratio: 
 

  𝐷𝐷𝑇𝑇𝐴𝐴𝑅𝑅 =  (𝑅𝑅𝐷𝐷𝑇𝑇) / (𝑇𝑇𝑇𝑇𝐶𝐶𝑄𝑄) (16) 
 

where: 𝐷𝐷𝑇𝑇𝐴𝐴𝑅𝑅 is Green Time Allocation Ratio; 
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𝑅𝑅𝐷𝐷𝑇𝑇 - the ideal duration of green signal for each phase (Optimal Green Time); 𝑇𝑇𝑇𝑇𝐶𝐶𝑄𝑄 - the total duration of the signal cycle (Total Signal Cycle Length). 
 

B.1.2.3 Queue Length Estimation: 
 

  𝑄𝑄𝑄𝑄𝑅𝑅 =  (𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇𝑎𝑎𝑇𝑇 𝑅𝑅𝑎𝑎𝐶𝐶𝐶𝐶)  ∗  (𝑇𝑇𝐶𝐶𝑎𝑎𝑇𝑇𝑎𝑎𝐷𝐷𝐶𝐶 𝑇𝑇𝑎𝑎𝑎𝑎𝐶𝐶), (17) 
 

where: 𝑄𝑄𝑄𝑄𝑅𝑅 is Queue Length Estimation; 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇𝑎𝑎𝑇𝑇 𝑅𝑅𝑎𝑎𝐶𝐶𝐶𝐶 - the rate at which vehicles arrive at the intersection; 𝑇𝑇𝐶𝐶𝑎𝑎𝑇𝑇𝑎𝑎𝐷𝐷𝐶𝐶 𝑇𝑇𝑎𝑎𝑎𝑎𝐶𝐶 - the average time taken to service each vehicle. 
 

B.1.2.4 Optimal Signal Phase Sequence: 
 

  𝑅𝑅𝑇𝑇𝐶𝐶𝑇𝑇 =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(∑(𝑄𝑄𝑄𝑄𝐶𝐶𝑄𝑄𝐶𝐶 𝑄𝑄𝐶𝐶𝑎𝑎𝑎𝑎𝐶𝐶ℎ𝑖𝑖  ∗ 𝐻𝐻𝐶𝐶𝑇𝑇𝑎𝑎𝐷𝐷𝑖𝑖)),   (18) 
 

where: 𝑅𝑅𝑇𝑇𝐶𝐶𝑇𝑇 is Optimal Signal Phase Sequence; 𝑄𝑄𝑄𝑄𝐶𝐶𝑄𝑄𝐶𝐶 𝑄𝑄𝐶𝐶𝑎𝑎𝑎𝑎𝐶𝐶ℎ𝑖𝑖 - queue length for phase 𝑎𝑎; 𝐻𝐻𝐶𝐶𝑇𝑇𝑎𝑎𝐷𝐷𝑖𝑖 - delay experienced by vehicles in phase 𝑎𝑎. 
 

B.1.2.5 Saturation Flow Rate Calculation: 
 

  𝑇𝑇𝐹𝐹𝑅𝑅𝐶𝐶 =  (𝑁𝑁𝑄𝑄)  ∗  (𝑇𝑇𝐻𝐻) / (𝑇𝑇𝐷𝐷) , (19) 
 

where: 𝑇𝑇𝐹𝐹𝑅𝑅𝐶𝐶 is Saturation Flow Rate Calculation; 𝑁𝑁𝑄𝑄 - the number of lanes at the intersection; 𝑇𝑇𝐻𝐻 - the minimum time gap between consecutive vehicles for maximum flow; 𝑇𝑇𝐷𝐷 - the actual time gap observed between vehicles. 
 

These formulas aid in the planning phase of Intelligent Transportation Systems by 

optimizing traffic signal timings to minimize delays, reduce queue lengths, and maximize 

traffic flow efficiency at intersections. 

B.1.3 Proactive Resource Allocation in Intelligent Transportation Systems from the 

perspective of Planning 

B. 1.3.1 Proactive Resource Allocation Formula: 
 

  𝐶𝐶𝑅𝑅𝐴𝐴 =  ∑(𝐻𝐻𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝐷𝐷𝑖𝑖  −  𝐶𝐶𝑎𝑎𝐶𝐶𝑎𝑎𝐷𝐷𝑎𝑎𝐶𝐶𝐷𝐷𝑖𝑖), (20) 
 

where: 

PRA is Proactive Resource Allocation; 𝐻𝐻𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝐷𝐷𝑖𝑖 - demand for transportation resources in region 𝑎𝑎; 𝐶𝐶𝑎𝑎𝐶𝐶𝑎𝑎𝐷𝐷𝑎𝑎𝐶𝐶𝐷𝐷𝑖𝑖 - capacity of transportation resources in region 𝑎𝑎. 
 

B.1.3.2 Optimal Resource Utilization Index: 
 

  𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷 =  ∑(
𝑈𝑈𝑜𝑜𝑖𝑖𝑈𝑈𝑖𝑖𝑈𝑈𝑈𝑈𝑜𝑜𝑖𝑖𝑜𝑜𝑈𝑈𝑖𝑖𝐶𝐶𝑈𝑈𝑜𝑜𝑈𝑈𝐶𝐶𝑖𝑖𝑜𝑜𝐶𝐶 𝑖𝑖 ) , (21) 

 

where: 𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷 is Optimal Resource Utilization Index; 𝑅𝑅𝐶𝐶𝑎𝑎𝑇𝑇𝑎𝑎𝑈𝑈𝑎𝑎𝐶𝐶𝑎𝑎𝐶𝐶𝑎𝑎𝑖𝑖 - actual utilization of transportation resources in region 𝑎𝑎; 𝐶𝐶𝑎𝑎𝐶𝐶𝑎𝑎𝐷𝐷𝑎𝑎𝐶𝐶𝐷𝐷𝑖𝑖 - capacity of transportation resources in region 𝑎𝑎. 
 

B.1.3.3 Efficiency Improvement Factor: 
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  𝑅𝑅𝐷𝐷𝐹𝐹 =  ∑(𝐶𝐶𝑎𝑎𝐶𝐶𝐷𝐷𝑄𝑄𝐷𝐷𝐶𝐶𝑎𝑎𝑇𝑇𝑎𝑎𝐶𝐶𝐷𝐷𝑖𝑖 /𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝑄𝑄𝑎𝑎𝐷𝐷𝐶𝐶𝑖𝑖), (22) 
 

where: 𝑅𝑅𝐷𝐷𝐹𝐹 is Efficiency Improvement Factor; 𝐶𝐶𝑎𝑎𝐶𝐶𝐷𝐷𝑄𝑄𝐷𝐷𝐶𝐶𝑎𝑎𝑇𝑇𝑎𝑎𝐶𝐶𝐷𝐷𝑖𝑖 - productivity of transportation resources in region 𝑎𝑎; 𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝑄𝑄𝑎𝑎𝐷𝐷𝐶𝐶𝑖𝑖 - total resources available in region 𝑎𝑎. 
 

B.1.3.4 Resource Allocation Efficiency Ratio: 
 

  𝑅𝑅𝐴𝐴𝑅𝑅𝑅𝑅 =  ∑(
𝑅𝑅𝑅𝑅𝑖𝑖𝑇𝑇𝑅𝑅𝑖𝑖),  (23) 

 

where: 𝑅𝑅𝐴𝐴𝑅𝑅𝑅𝑅 is Resource Allocation Efficiency Ratio; 𝑅𝑅𝐴𝐴𝑖𝑖 - allocation of resources in region 𝑎𝑎 (Resource Allocation 𝑎𝑎); 𝑇𝑇𝑅𝑅𝑖𝑖 - total resources available across all regions (Total Resources 𝑎𝑎). 
 

B.1.3.5 Optimal Allocation Strategy: 
 

  𝑅𝑅𝐴𝐴𝑇𝑇 =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(∑(𝐵𝐵𝐶𝐶𝑎𝑎𝐶𝐶𝑓𝑓𝑎𝑎𝐶𝐶𝑖𝑖)) , (24) 
 

where: 𝑅𝑅𝐴𝐴𝑇𝑇 is Optimal Allocation Strategy; 𝐵𝐵𝐶𝐶𝑎𝑎𝐶𝐶𝑓𝑓𝑎𝑎𝐶𝐶𝑖𝑖 - benefit derived from resource allocation in region 𝑎𝑎. 
 

These formulas assist in proactive resource allocation for Intelligent Transportation 

Systems, ensuring efficient utilization of transportation resources and enhancing overall 

system performance. By optimizing resource allocation based on demand, capacity, 

utilization, and productivity, planners can effectively manage traffic flow and improve the 

reliability and effectiveness of transportation systems. 
 

 

B.2 Manageability as planning endeavor in Intelligent Transportation Systems from 

the viewpoint of “unknown in decision making process" and "unstable and with large 

uncertainty situation" 

The investigation [9] describes research aimed at determining expectations regarding 

Intelligent Transport Systems (ITS) applications for the management of freight transport 

enterprises. The study involves surveying 164 freight transport companies in southern Poland 

to identify the most important features of ITS applications perceived by the respondents. 

Subsequently, these features are categorized into four areas of support for management 

processes: vehicle management support, infrastructure management support, policy support, 

and general management support. The analysis involves elaborating on the expectations of 

representatives from all 164 freight transport companies towards 36 different ITS 

applications within these areas of support. The investigation focuses on the planning phase 

of understanding expectations and requirements for implementing ITS applications in freight 

transport enterprises. 

The scientific work [10] discusses the challenges and barriers associated with 

implementing efficient and effective intermodal freight transport networks, such as rising 

fuel prices, drivers' shortages, legal developments, and congestion. It also highlights the role 

of Intelligent Communication Systems (ICS) in overcoming these barriers by providing real-

time visibility, tracking, and efficient data collection. The scientific work then introduces the 

"ITS Italy 2020" project, which aims to foster the diffusion of Intelligent Transport Systems 
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(ITS) and presents a prototype solution for managing and monitoring freight transport along 

an intermodal network. This prototype solution integrates various systems and actors 

involved in the process, thus contributing to the successful design and implementation of an 

intermodal transport system. 

The scientific study [11] discusses the need for cooperative intelligent public transport 

systems (C-ITS) in Smart Cities and proposes a solution that integrates the perspectives of 

travelers, public administration, vehicle manufacturers, and transport operators. The 

proposed solution includes defining capabilities maturity levels of the mobility ecosystem 

and a functional architecture for a collaborative decision-making system to implement C-ITS 

in future Smart Cities. The study digs into planning aspects by emphasizing various elements 

to enhance awareness and understanding of the Capability Maturity Model (CMM) for 

stakeholders. It focuses on collaborative assessment and improvement of capabilities among 

public and private companies, government regulation, conduct, and control to establish 

stable and mature processes for C-ITS institutionalization. Additionally, it discusses defining 

a functional architecture for C-ITS in future Smart Cities to support collaborative decision-

making for public transport implementation. 

The study [12] analyse the need for a solid framework and specific norms to be 

followed by Intelligent Transport Systems (ITS) applications, which suggests a planning 

process for the development and implementation of these systems in the European Union. 

Additionally, it mentions the coordination efforts of Member States through the NAPCORE 

project to harmonize their National Access Points (NAPs), which involves strategic planning 

and coordination of activities. Overall, study focuses on outlining planned activities and 

strategies for the development and implementation of NAPs, indicating a planning-oriented 

approach. 

The study [13] investigates the operational planning of an environmentally friendly 

urban logistics (UL) service that leverages passenger bus networks for freight deliveries 

within cities. This approach aims to reduce the number of combustion engine vehicles 

operating in urban centers, thereby improving air quality, noise levels, and traffic congestion. 

The service involves clients dropping off freight at designated bus hubs outside the city 

center. Buses then transport the freight to designated stops within the city center, where a 

last-mile operator (LMO) completes the final delivery to the destination address. To optimize 

the operational planning of this entire logistics process, encompassing freight request 

reception to final delivery, this research proposes five Integer Linear Programming (ILP) 

models, each addressing a specific operational objective. The proposed models consider the 

perspectives of both the bus network operator and the LMO, with some focusing on the 

robustness of plans against potential disruptions. Additionally, the analysis examines five 

practical operational planning scenarios where two objectives are optimized. The analysis 

further demonstrates how these scenarios can be solved using the proposed ILP models. 

Certain elements during planning, as described in the investigation cited above, as 

well as those reflected by the authors of the current article, may be ambiguous and restrict 

the manageability of traffic flow in the Face of Uncertainty within Intelligent Transportation 

Systems (ITS). 

Effective traffic management in ITS relies heavily on robust planning methodologies. 

However, the presence of unknown factors can significantly hinder the decision-making 

processes within these plans. Here, we explore the impact of "unknown" elements on three 
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key ITS applications: Dynamic Route Guidance Index (DRGI), Proactive Resource Allocation 

(PRA), and Traffic Signal Optimization. 
 

B.2.1. Dynamic Route Guidance Index (DRGI) 

DRGI aims to provide real-time route recommendations to drivers based on an 

assessment of current and predicted traffic conditions. However, the level of congestion on 

different routes can be significantly impacted by unforeseen events. These events can 

include: 

B.2.1.1 Accidents. Unforeseen accidents can create bottlenecks and significantly 

increase travel times on specific routes. The unpredictable nature of accidents makes it 

challenging to integrate them into congestion forecasts used by DRGI. 

B.2.1.2 Weather Events. Rapid shifts in weather, such as snowfall, fog, or rainfall, can 

greatly influence the state of the roads and how drivers behave. The unpredictable nature of 

weather patterns makes it difficult for DRGI to forecast traffic congestion accurately. 

B.2.1.3 Infrastructure Disruptions. Unplanned road closures or maintenance activities 

can disrupt traffic flow and render DRGI recommendations inaccurate. 

These "unknown" elements can lead to suboptimal route recommendations, 

potentially increasing travel times and driver frustration. 
 

B.2.2 Proactive Resource Allocation in Intelligent Transportation Systems (PRA) 

PRA aims to optimize the allocation of resources like buses, public bicycles, or ride-

sharing services in anticipation of future demand. However, the demand for transportation 

resources in different regions can be influenced by several unknown factors: 

B.2.2.1 Spontaneous Events. Unforeseen events like concerts, sporting events, or 

protests can create temporary spikes in demand for transportation in specific areas. The 

unpredictable nature of such events makes it difficult for PRA to accurately forecast demand. 

B.2.2.2 Shifting Travel Patterns. Changes in commuting patterns due to holidays, school 

schedules, or special events can lead to unexpected fluctuations in demand. These variations 

are often difficult to predict and can lead to resource allocation inefficiencies. 

B.2.2.3 Emerging Transportation Modes. The introduction of new transportation options 

like autonomous vehicles or ride-hailing services can disrupt established travel patterns, 

making historical data used by PRA models less reliable. 

The presence of these uncertainties can lead to inefficient resource allocation, 

potentially resulting in insufficient resources in high-demand areas and underutilization in 

others. 
 

B.2.3. Traffic Signal Optimization in Intelligent Transportation Systems 

Traffic signal optimization algorithms seek to modify signal timings in real-time 

according to current traffic conditions to enhance the movement of vehicles. However, 

determining the optimal green time for each phase of the signal cycle can be hampered by 

unknown factors such as: 

B.2.3.1 Pedestrian Activity. Unpredictable pedestrian activity at crosswalks can disrupt 

traffic flow and render optimized signal timings ineffective. The stochastic nature of 

pedestrian behavior makes it challenging to integrate into signal optimization models. 

B.2.3.2 Public Transportation Schedule Deviations. Deviations from public transportation 

schedules, such as bus delays, can create unexpected fluctuations in traffic flow at specific 
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intersections. These unpredictable variations can disrupt the effectiveness of optimized 

signal timings. 

B.2.3.3 Sensor Malfunctions. Traffic signal optimization algorithms depend significantly 

on live data gathered from sensors installed in the roads. Sensor malfunctions or 

communication disruptions can lead to inaccurate data and suboptimal signal timing 

decisions. 

These "unknown" elements can lead to inefficient signal timing, potentially increasing 

congestion and wait times for drivers. 

Unforeseen events and the inherent uncertainty associated with human behavior 

present significant challenges for planning and decision-making in ITS. By acknowledging 

these limitations and incorporating methods for handling uncertainty, ITS planners can 

develop more robust and adaptable strategies for managing traffic flow and resource 

allocation. 
 

C.1  Manageability as structuring endeavor in Intelligent Transportation Systems 

from the viewpoint of “knowledge in decision making process” and “stable and known 

situation" 

From the perspective of manageability, there are certain equations that can be utilized 

to compute structuring engagement in Intelligent Transportation Systems: 
 

C.1.1 Dynamic Route Guidance in Intelligent Transportation Systems from the 

perspective of Organizing 

C.1.1.1 Dynamic Route Guidance Algorithm. The Dynamic Route Guidance algorithm 

seeks to enhance traffic flow by continuously updating route suggestions in response to 

current traffic conditions. It can be represented as:  
 

  𝑅𝑅{𝑜𝑜+1}  =  𝐻𝐻𝐷𝐷𝑎𝑎𝑎𝑎𝑅𝑅𝐶𝐶𝑄𝑄𝐶𝐶𝐶𝐶(𝑅𝑅𝑜𝑜,𝑇𝑇{𝑜𝑜+1}),   (25) 
 

where: 𝑅𝑅{𝑜𝑜+1} is the updated set of recommended routes at time 𝐶𝐶 + 1; 𝑅𝑅𝑜𝑜 - the set of routes at time t; 𝑇𝑇{𝑜𝑜+1} - the observed traffic conditions at time 𝐶𝐶 + 1. 
 

C.1.1.2 Route Selection Criteria. The algorithm considers various factors when selecting 

routes, including current traffic congestion, road conditions, historical traffic patterns, and 

user preferences. Each route is assigned a score based on these factors, and the algorithm 

selects the route with the highest score as the recommended route. 

C.1.1.3 Traffic Condition Estimation. To update route recommendations in real-time, the 

algorithm relies on accurate estimation of traffic conditions. This can be achieved using data 

from traffic sensors, GPS devices, traffic cameras, and historical traffic data. The traffic 

condition estimation can be represented as:  
 

  𝑇𝑇{𝑜𝑜+1}  =  𝑅𝑅𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶𝑇𝑇𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑎𝑎𝐷𝐷(𝐻𝐻{𝑜𝑜+1}),  (26) 
 

where: 𝑇𝑇{𝑜𝑜+1} is the estimated traffic conditions at time 𝐶𝐶 + 1; 

D_{t+1} - the observed traffic data at time 𝐶𝐶 + 1. 
 

C.1.1.4 Dynamic Route Adjustment. Based on the estimated traffic conditions, the 

algorithm dynamically adjusts route recommendations to minimize travel time and alleviate 
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congestion. To ease congestion, strategies might include diverting vehicles to underutilized 

roads or proposing substitutes for individual car use, such as public transportation or ride-

sharing services. 

C.1.1.5 User Feedback Integration. The algorithm continuously incorporates user 

feedback to improve route recommendations over time. Users can provide feedback on route 

satisfaction, traffic conditions, and other factors, which the algorithm uses to refine its 

recommendations in future iterations. 

C.1.1.6 Optimization Objective. This algorithm strives to create a well-oiled traffic 

system by minimizing congestion, expediting travel times, and boosting overall 

transportation effectiveness. It achieves this by organizing traffic in a way that minimizes 

congestion and maximizes the throughput of the transportation network. 

These formulas enable transportation authorities to organize traffic effectively using 

Dynamic Route Guidance algorithms, leading to improved traffic flow and enhanced overall 

transportation system performance. 
 

C.1.2 Traffic Signal Optimization in Intelligent Transportation Systems from the 

perspective of Organizing 

C.1.2.1 Traffic Signal Timing Optimization. Traffic signal timing optimization aims to 

minimize delays and congestion at intersections by adjusting signal timings based on real-

time traffic conditions. The optimization process can be represented as: 
 

  𝑅𝑅𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑈𝑈𝐶𝐶(𝑇𝑇𝑜𝑜), (27) 
 

where: 𝑇𝑇𝑜𝑜 is the set of traffic signal timings at time 𝐶𝐶. 
 

C.1.2.2 Traffic Signal Timing Adjustment. To optimize traffic signal timings, the 

algorithm adjusts the durations of green, yellow, and red signal phases at each intersection 

dynamically. The adjustment process is based on observed traffic flow patterns, historical 

data, and predictive models of traffic behavior. 

C.1.2.3 Traffic Flow Prediction. Prior to signal timing optimization, the algorithm 

predicts future traffic flow patterns using forecasting models. This can be represented as:  
 

  𝐹𝐹{𝑜𝑜+1}  =  𝐹𝐹𝐶𝐶𝑎𝑎𝐶𝐶𝐷𝐷𝑎𝑎𝐶𝐶𝐶𝐶(𝑇𝑇{𝑜𝑜}), (28) 
 

where: 𝐹𝐹{𝑜𝑜+1} is the forecasted traffic flow at time 𝐶𝐶 + 1; 𝑇𝑇{𝑜𝑜} - the observed traffic flow at time 𝐶𝐶. 
 

C.1.2.4 Performance Evaluation Metrics. The effectiveness of traffic signal optimization 

is evaluated using performance metrics such as intersection throughput, average delay per 

vehicle, and overall travel time. These metrics provide insights into the efficiency and 

effectiveness of signal timing adjustments. 

C.1.2.5 Optimization Objective. The overarching objective of traffic signal optimization 

is to improve traffic flow, reduce congestion, and enhance overall transportation system 

efficiency. By optimizing signal timings based on real-time traffic conditions, the algorithm 

aims to minimize delays and improve the overall driving experience for commuters. 

C.1.2.6 Adaptive Control Strategies. Ditching the rigid plan, traffic lights become 

dynamic. They analyze constant traffic flow data to adjust green light durations, making 

intersections run like well-oiled machines. 
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These formulas enable transportation authorities to effectively organize traffic flow 

through Traffic Signal Optimization, leading to reduced congestion, improved travel times, 

and enhanced overall transportation system performance. 
 

C.1.3 Proactive Resource Allocation in Intelligent Transportation Systems from the 

perspective of Organizing 

C.1.3.1 Dynamic Resource Allocation Algorithm. No more one-size-fits-all approach. 

Dynamic resource allocation makes the most of transportation resources like lanes and traffic 

signals by constantly adapting them to the current traffic situation. The algorithm 

dynamically adjusts resource allocations to optimize traffic flow and minimize congestion. 

Mathematically, this can be represented as:  
 

 𝐴𝐴𝑇𝑇𝑇𝑇𝐶𝐶𝐷𝐷𝑎𝑎𝐶𝐶𝑎𝑎𝐶𝐶𝑎𝑎{𝑜𝑜+1}  =  𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑈𝑈𝐶𝐶(𝐹𝐹𝐶𝐶𝑎𝑎𝐶𝐶𝐷𝐷𝑎𝑎𝐶𝐶𝐶𝐶{𝑜𝑜},𝐶𝐶𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎{𝑜𝑜}), (29) 
 

where: 𝐴𝐴𝑇𝑇𝑇𝑇𝐶𝐶𝐷𝐷𝑎𝑎𝐶𝐶𝑎𝑎𝐶𝐶𝑎𝑎{𝑜𝑜+1}  is the resource allocation plan at time 𝐶𝐶 + 1; 𝐹𝐹𝐶𝐶𝑎𝑎𝐶𝐶𝐷𝐷𝑎𝑎𝐶𝐶𝐶𝐶{𝑜𝑜} - the forecasted traffic conditions at time 𝐶𝐶; 𝐶𝐶𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎{𝑜𝑜} - the planned resource allocations at time 𝐶𝐶. 
 

C.1.3.2 Resource Utilization Metrics. To evaluate the effectiveness of resource allocation, 

various metrics can be used to assess resource utilization and performance. These metrics 

may include lane occupancy rates, route efficiency indices, and traffic signal utilization rates. 

C.1.3.3 Optimization Objective. The primary objective of proactive resource allocation is 

to optimize the utilization of transportation resources to improve traffic flow and minimize 

congestion. By dynamically allocating resources based on forecasted and planned traffic 

conditions, the algorithm aims to enhance overall transportation system efficiency. 

C.1.3.4 Adaptive Resource Allocation Strategies. Advanced resource allocation 

algorithms use flexible methods to adjust resource distribution in real-time, responding to 

fluctuating traffic conditions. By utilizing live data and feedback loops, these strategies aim 

to optimize resource usage and enhance traffic flow dynamically. 

C.1.3.5 Performance Evaluation Criteria. The performance of proactive resource 

allocation algorithms can be evaluated based on criteria such as travel time reduction, 

congestion mitigation, and overall transportation system efficiency. These criteria provide 

insights into the effectiveness of resource allocation strategies in optimizing traffic flow. 

By employing these formulas and strategies for proactive resource allocation, 

transportation authorities can effectively organize traffic flow, optimize resource utilization, 

and improve overall transportation system performance. 
 

C.2  Manageability as structuring undertaking in in Intelligent Transportation 

Systems from the viewpoint of "unknown in decision making process" and "unstable and with 

large uncertainty situation" 

The study [14] discusses the process of standardization in Intelligent Transport 

Systems (ITS) in the United States and Europe from 1991 to 2012. It examines how policies 

have influenced technical standardization, including policy priorities, government roles, 

intervention time, and cooperation. This involves organizing and structuring the 

standardization process, analyzing the influence of policies on various dimensions, and 

identifying patterns and impacts on technology research and development. 
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The investigation [15] primarily focuses on the development and application of a novel 

framework for traffic prediction and organizing, which involves incorporating surrounding 

spatial data from the road network into the analysis of existing sensor graphs. It describes 

the introduction of a heterogeneous graph that integrates surrounding spatial information 

from the road network into the analysis, highlighting the close association between traffic 

conditions and surrounding spatial information. The proposed framework, the heterogeneous 

attentive spatial-temporal network (HASTN), is introduced, which constructs a heterogeneous 

graph merging road networks with surrounding geographic features and employs attention 

mechanisms to learn traffic patterns. The work mentions the achievement of promising 

results on public datasets and a proposed dataset, indicating the forecasting capabilities of 

the proposed method and organizing effects on traffic flow. Additionally, it discusses the 

analysis of the impact of road traffic patterns on attention using spatial information. 

Reference [16] primarily focuses on enhancing the precision of long-term traffic flow 

forecasting and management in urban settings, crucial for optimizing traffic flow and travel 

efficiency. The study examines the difficulties of modeling the interdependence of space and 

time in urban traffic data and underscores the shortcomings of current models in capturing 

meaningful spatial similarities and temporal influences on prediction accuracy. Introducing 

the multi-scale persistent spatiotemporal transformer (MSPSTT) model as a solution, it 

integrates temporal, periodic, and spatial attributes within an encoder-decoder framework. 

The model employs multi-head attention mechanisms to dynamically extract temporal, 

geographical, and semantic features, continually updating the spatiotemporal decoder to 

discern correlations across different time intervals for long-term prediction. Experimental 

findings underscore MSPSTT's superior performance compared to existing models. 

The scientific investigation [17] developing multivariate machine learning-based 

prediction models and organizing methods for freeway traffic flow under non-recurrent 

events, specifically road crashes and rain. It outlines the construction of five different model 

architectures, including Multi-Layer Perceptron, Convolutional Neural Network Long Short-

Term Memory, Convolutional Neural Network and Long Short-Term Memory, and Auto 

encoder and Long Short-Term Memory architectures networks, to predict traffic flow using a 

dataset consisting of five features: flow rate, speed, density, road incident, and rainfall. The 

evaluation of these models' performance is based on two standard metrics: Root Mean Square 

Error (RMSE) and Mean Absolute Error (MAE). Overall, work emphasizes the development and 

evaluation of forecasting models to predict freeway traffic flow during non-recurrent events, 

employing various machine learning techniques to leverage multivariate data inputs and 

organizing methods. 

In reference [18], the research centers on creating and assessing an artificial neural 

network (ANN) model designed to predict and manage traffic flow at signal-controlled 

intersections. It highlights the growing adoption of machine learning techniques, particularly 

time series prediction, in forecasting traffic patterns. The study addresses the current lack of 

comprehensive research into modeling traffic flow specifically at signalized intersections. 

Using data from the South African road network, particularly from seven intersections linked 

to the busy N1 Allandale interchange, the research incorporates various traffic flow variables 

such as vehicle types, speeds, density, time, and volume. The ANN model is employed to 

accurately forecast traffic flow dynamics. Results indicate the ANN's robust performance 

across training, testing, and management phases, demonstrating its effectiveness in 

predicting and analyzing traffic conditions at signal-controlled intersections. 
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There is a possibility that unforeseen elements, as mentioned above, and reflections 

from the authors of the present article might emerge during the organization phase of traffic 

flow in Intelligent Transportation Systems: 

C.2.1 Uncertainty in Traffic Conditions. Despite efforts to estimate traffic conditions 

accurately, unexpected events such as accidents, road closures, or adverse weather 

conditions may lead to unpredictable changes in traffic flow. 

C.2.2 Dynamic Route Guidance Adjustment. Adapting route recommendations in real-

time requires continuous monitoring of traffic conditions and rapid decision-making to 

minimize delays and congestion effectively. 

C.2.3 Behavior of participants. Gaining insight into user actions and preferences is 

essential for providing effective route guidance. However, predicting how individuals will 

respond to route suggestions, especially in unpredictable traffic conditions, can be 

challenging. 

C.2.4 Resource Availability. The availability of resources such as transportation lanes, 

routes, and traffic signals may fluctuate due to maintenance activities, emergencies, or 

unforeseen events, leading to uncertainty in resource allocation and utilization. 

C.2.5 Real-time Data Accuracy. Depending on real-time data from sources like traffic 

sensors, GPS units, and traffic cameras to make decisions carries the risk of data inaccuracies 

or delays in transmission, which can impact the dependability of operational activities. 

C.2.6 Adaptive Control Strategies Effectiveness. While adaptive control strategies aim to 

optimize traffic flow dynamically, their effectiveness in responding to rapidly changing traffic 

conditions may vary, leading to uncertainty in their impact on overall traffic management. 

C.2.7 Forecasting Model Reliability. Forecasting future traffic conditions using predictive 

models is essential for proactive decision-making, but the accuracy and reliability of these 

models under dynamic and uncertain traffic environments may be limited. 

C.2.8 Performance Evaluation Challenge. Evaluating the real-time effectiveness of traffic 

management activities presents challenges because of the intricate nature of traffic systems 

and the constantly changing flow of vehicles, which complicates precise measurement of 

management strategy effectiveness. 

C.2.9 Feedback Integration Timeliness. Incorporating user feedback into organizing 

activities relies on timely data collection and analysis, but delays in feedback processing or 

response implementation may hinder the effectiveness of adaptive management approaches. 

C.2.10 System Resilience and Adaptability. Ensuring the resilience and adaptability of 

organizing activities to cope with unforeseen disruptions or uncertainties in traffic conditions 

is essential for maintaining the manageability of transportation systems under challenging 

circumstances. 

Despite efforts to estimate traffic conditions accurately, unexpected events such as 

accidents or adverse weather conditions may lead to unpredictable changes in traffic flow. 

Adapting route recommendations in real-time requires continuous monitoring and rapid 

decision-making to minimize delays effectively. Effectively guiding routes relies on 

understanding user behavior and preferences, yet forecasting individual decisions and 

responses can be problematic, especially in unpredictable traffic conditions. 
 

D.1 Manageability as deployment endeavor within in Intelligent Transportation 

Systems from the viewpoint of “knowledge in decision making process” and “stable and 

known situation" 
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A wide variety of processes can be implemented within Intelligent Transportation 

Systems. Consequently, we present several formulas to calculate the specifics of these 

operational endeavors: 
 

D.1.1 Dynamic Route Guidance in Intelligent Transportation System, considering the 

perspective of implementing: 

D.1.1.1 Dynamic Route Guidance Algorithm:A dynamic route guidance algorithm helps 

drivers navigate through traffic by recommending the most efficient route in real-time. One 

common approach is to calculate the shortest path based on current traffic conditions, 

considering factors such as congestion levels, road closures, and travel time estimates. 
 

 𝑇𝑇ℎ𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎𝐶𝐶ℎ =  𝐻𝐻𝑎𝑎𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎(𝐷𝐷𝑎𝑎𝑎𝑎𝐶𝐶ℎ, 𝑇𝑇𝐶𝐶𝑎𝑎𝑎𝑎𝐶𝐶𝑁𝑁𝐶𝐶𝐷𝐷𝐶𝐶,𝑅𝑅𝑎𝑎𝐷𝐷𝑁𝑁𝐶𝐶𝐷𝐷𝐶𝐶), (30) 
 

where: 𝑇𝑇ℎ𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎𝐶𝐶ℎ is the optimal route from the start node to the end node; 𝐻𝐻𝑎𝑎𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎 - the Dijkstra's algorithm used to find the shortest path in the graph 

representation of the road network; 𝐷𝐷𝑎𝑎𝑎𝑎𝐶𝐶ℎ - the road network graph with nodes representing intersections and 

edges representing road segments; 𝑇𝑇𝐶𝐶𝑎𝑎𝑎𝑎𝐶𝐶𝑁𝑁𝐶𝐶𝐷𝐷𝐶𝐶 - the starting point of the journey; 𝑅𝑅𝑎𝑎𝐷𝐷𝑁𝑁𝐶𝐶𝐷𝐷𝐶𝐶 - the destination point. 
 

D.1.1.2 Parameter Estimation. The parameters of the dynamic route guidance algorithm, 

such as traffic flow data, road network topology, and historical travel patterns, are estimated 

using machine learning techniques and real-time sensor data. These parameters are 

continuously updated to reflect changing traffic conditions and improve route 

recommendations. 

D.1.1.3 Model Evaluation. After implementing the dynamic route guidance algorithm, 

its performance is evaluated based on metrics such as travel time savings, congestion 

reduction, and user satisfaction. These metrics help assess the effectiveness of the algorithm 

in optimizing traffic flow and guiding drivers to their destinations efficiently. Through the 

adoption of dynamic route guidance algorithms, transportation authorities can enhance 

traffic flow, mitigate congestion, and elevate the overall travel satisfaction of road users. 

D.1.2.1 Traffic Signal Timing Optimization. Traffic signal timing optimization aims to 

minimize congestion and delays at intersections by adjusting the timing of traffic signals 

based on real-time traffic data and predefined optimization objectives. 
 

 𝐷𝐷𝑎𝑎𝐶𝐶𝐶𝐶𝑎𝑎𝑇𝑇𝑎𝑎𝑎𝑎𝐶𝐶 =  𝑓𝑓(𝑇𝑇𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑎𝑎𝐷𝐷𝑇𝑇𝐶𝐶𝑇𝑇𝑄𝑄𝑎𝑎𝐶𝐶,𝑇𝑇𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑎𝑎𝐷𝐷𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷,𝐶𝐶𝐷𝐷𝐷𝐷𝑇𝑇𝐶𝐶𝑇𝑇𝑎𝑎𝑎𝑎𝐶𝐶), (31) 
 

where: 𝐷𝐷𝑎𝑎𝐶𝐶𝐶𝐶𝑎𝑎𝑇𝑇𝑎𝑎𝑎𝑎e is the duration of the green signal phase; 𝑇𝑇𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑎𝑎𝐷𝐷𝑇𝑇𝐶𝐶𝑇𝑇𝑄𝑄𝑎𝑎𝐶𝐶 - the volume of vehicles approaching the intersection; 𝑇𝑇𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑎𝑎𝐷𝐷𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷 - the average speed of vehicles in the vicinity of the 

intersection; 𝐶𝐶𝐷𝐷𝐷𝐷𝑇𝑇𝐶𝐶𝑇𝑇𝑎𝑎𝑎𝑎𝐶𝐶 - the total duration of the traffic signal cycle. 

 

D.1.2.2 Optimization Objective Function. An objective function is defined to quantify the 

performance of traffic signal timing plans. It typically incorporates factors such as intersection 

delay, queue length, and vehicle throughput to balance competing objectives and find an 

optimal signal timing configuration. 
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𝑅𝑅𝑂𝑂𝐷𝐷𝐶𝐶𝐷𝐷𝐶𝐶𝑎𝑎𝑇𝑇𝐶𝐶 =  𝑤𝑤1 ∗ 𝐻𝐻𝐶𝐶𝑇𝑇𝑎𝑎𝐷𝐷 +  𝑤𝑤2 ∗ 𝑄𝑄𝑄𝑄𝐶𝐶𝑄𝑄𝐶𝐶𝑄𝑄𝐶𝐶𝑎𝑎𝑎𝑎𝐶𝐶ℎ +  𝑤𝑤3 ∗ 𝑇𝑇ℎ𝑎𝑎𝐶𝐶𝑄𝑄𝑎𝑎ℎ𝐶𝐶𝑄𝑄𝐶𝐶,  (32) 

where: 𝑅𝑅𝑂𝑂𝐷𝐷𝐶𝐶𝐷𝐷𝐶𝐶𝑎𝑎𝑇𝑇𝐶𝐶 is an optimal signal timing configuration; 𝐻𝐻𝐶𝐶𝑇𝑇𝑎𝑎𝐷𝐷 - the total delay experienced by vehicles at the intersection; 𝑄𝑄𝑄𝑄𝐶𝐶𝑄𝑄𝐶𝐶𝑄𝑄𝐶𝐶𝑎𝑎𝑎𝑎𝐶𝐶ℎ - the length of vehicle queues at the intersection; 𝑇𝑇ℎ𝑎𝑎𝐶𝐶𝑄𝑄𝑎𝑎ℎ𝐶𝐶𝑄𝑄𝐶𝐶 - the number of vehicles passing through the intersection during 

a given time period; 𝑤𝑤1,𝑤𝑤2,𝑤𝑤3 - weighting factors that determine the relative importance of each 

objective. 

D.1.2.2 Parameter Adjustment Algorithm. A parameter adjustment algorithm is used to

iteratively refine the traffic signal timing parameters to optimize the objective function. 

Techniques such as genetic algorithms, simulated annealing, or reinforcement learning may 

be employed to search for the optimal parameter values. 𝑁𝑁𝐶𝐶𝑤𝑤𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎 =  𝐶𝐶𝑄𝑄𝑎𝑎𝑎𝑎𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎 +  𝛥𝛥𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎, (33) 

where: 𝑁𝑁𝐶𝐶𝑤𝑤𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎 is the updated value of the signal timing parameter; 𝐶𝐶𝑄𝑄𝑎𝑎𝑎𝑎𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎 - the current value of the parameter; 𝛥𝛥𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎 - the change in parameter value determined by the optimization 

algorithm. 

Through the adoption of advanced traffic signal optimization techniques, 

transportation authorities can enhance the efficiency of traffic flow, decrease travel 

durations, and improve the overall operational performance of road networks. 

D.1.3.1 Dynamic Resource Allocation Algorithm. Dynamic resource allocation adjusts the

distribution of resources like traffic lanes, signal timings, and transit services in response to 

current traffic conditions and demand fluctuations in real-time. An algorithm is used to 

determine the optimal allocation strategy. 𝐴𝐴𝑇𝑇𝑇𝑇𝐶𝐶𝐷𝐷𝑎𝑎𝐶𝐶𝑎𝑎𝐶𝐶𝑎𝑎 =  𝑓𝑓(𝑇𝑇𝑇𝑇,𝐶𝐶𝑄𝑄,𝑅𝑅𝐴𝐴), (34) 

where: 𝐴𝐴𝑇𝑇𝑇𝑇𝐶𝐶𝐷𝐷𝑎𝑎𝐶𝐶𝑎𝑎𝐶𝐶𝑎𝑎 is the allocation of resources (e.g., lanes, signal timings); 𝑇𝑇𝑇𝑇 - the volume of traffic on the road network; 𝐶𝐶𝑄𝑄 - the level of congestion or traffic flow conditions; 𝑅𝑅𝐴𝐴 - the availability of resources for allocation. 

D.1.3.2 Optimal Lane Assignment. Optimal lane assignment aims to assign vehicles to

lanes in a way that minimizes congestion and maximizes throughput. An algorithm takes into 

account variables like lane capacity, speed of vehicle, and the level of congestion specific to 

each lane to decide in real-time which lanes vehicles should use. 𝑄𝑄𝑎𝑎𝑎𝑎𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝑎𝑎𝐶𝐶 =  𝑓𝑓(𝑇𝑇𝑇𝑇, 𝑄𝑄𝐶𝐶,𝐶𝐶𝑄𝑄), (35) 

where: 

LaneAssignment is the assignment of vehicles to lanes; 𝑇𝑇𝑇𝑇 - the speed of vehicles; 𝑄𝑄𝐶𝐶 - the maximum capacity of each lane; 𝐶𝐶𝑄𝑄 - the level of congestion on each lane. 
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D.1.3.3 Dynamic Signal Timing Adjustment. Adapting traffic signal timings dynamically 

involves modifying them in response to current traffic conditions. An algorithm calculates the 

best signal timings considering factors such as traffic volume, queues of vehicles, and delays 

at intersections. 

  𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  𝑓𝑓(𝑇𝑇𝑇𝑇,𝑇𝑇𝑄𝑄, 𝐷𝐷𝐻𝐻), (36) 
 

where: 

SignalTiming is the timing of traffic signals; 𝑇𝑇𝑇𝑇 - the volume of traffic approaching the intersection; 𝑇𝑇𝑄𝑄 - the length of vehicle queues at the intersection; 𝐷𝐷𝐻𝐻 - the delay experienced by vehicles at the intersection. 
 

By implementing proactive resource allocation strategies, transportation authorities 

can optimize the use of available resources, improve traffic flow, and enhance overall 

transportation system performance. 

These formulas represent algorithms used to implement proactive resource allocation 

strategies in an Intelligent Transportation System. They consider parameters such as traffic 

volume, congestion level, resource availability, vehicle speed, lane capacity, vehicle queues, 

and intersection delay to optimize the allocation of resources, lane assignment, and signal 

timing for improved traffic flow and system performance. 
 

D.2  Manageability as executing operation within Intelligent Transportation 

Systems considering "unknown in decision making process" and "unstable and with large 

uncertainty situation" 

In the study [19] it is discussed the development and evaluation of a model 

Spatiotemporal Multi-Head Graph Attention Network (ST-MGAT) for predicting traffic flow. It 

outlines the methodology used for traffic flow prediction and implementation, describes the 

structure of the proposed model, presents experiments designed to validate the model's 

performance, and reports the results obtained from these experiments. Mostly the study 

focuses on forecasting future traffic flow patterns using a novel approach, making it most 

relevant to the implementation in the Intelligent Transportation Systems. 

The investigation [20] provided primarily focuses on the "implementing" category. It 

discusses the implementation of intelligent transportation systems (ITS) in both developed 

and developing countries, particularly in sub-Saharan countries. The paper outlines the 

differences in transportation scenarios between developed and sub-Saharan countries and 

proposes ideas for deploying ITS on dirt roads, which involves the practical implementation 

of such systems in real-world settings. 

Reference [21] explores the development and application of a method for short-term 

traffic flow prediction in urban intelligent transportation systems (ITS) to tackle congestion 

issues. It introduces an ensemble prediction strategy combining optimized variational mode 

decomposition (OVMD) with a hybrid long short-term memory network (LSTM). The approach 

aims to enhance prediction accuracy by optimizing VMD parameters using an enhanced bat 

algorithm, decomposing traffic flow time series into multiple intrinsic mode functions (IMFs) 

via OVMD, and refining an optimized L-BILSTM model through a fusion of standard LSTM and 

bidirectional LSTM. The study empirically validates the proposed prediction model using 

traffic data from Changsha City, assessing how OVMD impacts training set data and overall 

prediction outcomes. 
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The search work [22] develops application of an algorithm for short-term predictions 

and implementation of vehicle flow and speed on a road segment. It introduces a physics-

aware recurrent neural network (RNN) algorithm that embeds a discretization of a 

macroscopic traffic flow model, specifically the Traffic Reaction Model, into the architecture 

of the network. The algorithm utilizes past measurements of traffic flow and speed to 

estimate and predict space-time dependent traffic parameters, which are constrained by the 

macroscopic traffic flow model. These parameters are obtained using a succession of LSTM 

recurrent neural networks. The work emphasizes the importance of incorporating physics-

based models into neural network architectures for accurate traffic prediction and testing the 

algorithm on raw flow measurements obtained from loop detectors and how to implement it. 
 

D.2.1 Uncertain factors may emerge during the execution phase within Intelligent 

Transportation Systems. Here are the elements that could potentially be unknown during 

implementation based on works mentioned above and may affect the manageability of Traffic 

Flow Implementation Models: 

D.2.1.1 Data Accuracy. Despite efforts to use historical traffic data and real-time sensor 

information, inaccuracies or delays in data collection may occur, affecting the reliability of 

traffic flow predictions. 

D.2.1.2 Weather Variability. Weather conditions play a crucial role in traffic flow 

dynamics, yet accurately forecasting weather patterns and their impact on traffic can pose 

challenges, particularly in areas where weather patterns are unpredictable. 

D.2.1.3 Traffic Behavior Changes. Unexpected changes in driver behavior, such as 

accidents, road closures, or sudden shifts in travel patterns, can influence traffic flow 

dynamics and undermine the effectiveness of prediction models. 

D.2.1.4 Infrastructure Changes. Construction projects, road closures, or changes in traffic 

management policies may occur unexpectedly, leading to disruptions in traffic flow that are 

not accounted for in prediction models. 

D.2.1.5 System Integration Issues. Integrating prediction models with existing traffic 

management systems or infrastructure may encounter technical challenges or compatibility 

issues, affecting the implementation and effectiveness of the models. 

D.2.1.6 Stakeholder Coordination. Effective collaboration among diverse stakeholders—

including transportation agencies, local authorities, and technology providers—is essential 

for successful implementation. However, challenges such as varying priorities, 

communication barriers, or conflicting interests can impede seamless coordination and 

hinder the implementation process. 

D.2.1.7 Resource Allocation Constraints. Limited resources, such as funding, manpower, 

or technological capabilities, may constrain the implementation of traffic flow prediction 

models, impacting their scalability and effectiveness in real-world settings. 

D.2.1.8 Regulatory Compliance. Adhering to regulatory requirements and standards, 

such as data privacy regulations or traffic safety guidelines, is essential for implementing 

prediction models responsibly. Failure to comply with these regulations may lead to legal 

liabilities or public trust issues. 

D.2.1.9 Public Acceptance and Trust. Public acceptance of and trust in prediction models 

are crucial for their successful implementation. Addressing concerns about data privacy, 

algorithm transparency, and fairness is essential to gain public confidence and support. 
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D.2.1.10 Continuous Monitoring and Evaluation. Implementing traffic flow prediction 

models requires ongoing monitoring and evaluation to assess their performance, identify 

potential issues or limitations, and make necessary adjustments or improvements over time. 

These elements highlight the complexities and uncertainties involved in 

implementing traffic flow prediction models in Intelligent Transportation Systems, 

emphasizing the importance of effective planning and decision-making processes to ensure 

their successful deployment and manageability. 
 

E.1  Manageability as maintaining order and direction to ensure operational 

effectiveness and stability of Intelligent Transportation Systems viewed through the lens of 

“knowledge in decision making process” and “stable and known situation" 

Numerous equations exist for computing regulatory functions within Intelligent 

Transportation Systems.  
 

E.1.1 Traffic Flow Controlling Models with a focus on Dynamic Route Guidance. 

E.1.1.1 Dynamic Route Guidance Algorithm: 
 

  𝑇𝑇𝑖𝑖𝑖𝑖 =  𝑇𝑇𝑖𝑖𝑖𝑖 +  𝛼𝛼 ∗  (𝑇𝑇𝑜𝑜𝑈𝑈𝑝𝑝𝑡𝑡𝑝𝑝𝑜𝑜  −  𝑇𝑇𝑖𝑖𝑖𝑖), (37) 
 

where: 𝑇𝑇𝑖𝑖𝑖𝑖 is current traffic flow on route between nodes 𝑎𝑎 and 𝐷𝐷; 𝑇𝑇𝑜𝑜𝑈𝑈𝑝𝑝𝑡𝑡𝑝𝑝𝑜𝑜 - target traffic flow on route between nodes 𝑎𝑎 and 𝐷𝐷; 𝛼𝛼 - control parameter adjusting the rate of change. 
 

E.1.1.2 Congestion Mitigation Model: 
 

  𝑇𝑇𝑖𝑖𝑖𝑖  =  𝑇𝑇𝑖𝑖𝑖𝑖  +  𝛽𝛽 ∗  (𝑇𝑇𝑚𝑚𝑈𝑈𝑚𝑚  −  𝑇𝑇𝑖𝑖𝑖𝑖)  ∗  (1 −  𝐶𝐶−𝛾𝛾∗𝐷𝐷𝑖𝑖𝑖𝑖 )) (38) 
 

where: 𝑇𝑇𝑖𝑖𝑖𝑖 is updated traffic flow on route between nodes 𝑎𝑎 and 𝐷𝐷; 𝑇𝑇𝑚𝑚𝑈𝑈𝑚𝑚 - maximum traffic flow capacity of route between nodes 𝑎𝑎 
and 𝐷𝐷; 𝐻𝐻𝑖𝑖𝑖𝑖 - distance between nodes 𝑎𝑎 and 𝐷𝐷; 𝛽𝛽 - control parameter adjusting the rate of congestion 

alleviation; 𝛾𝛾 - control parameter adjusting the influence of distance on 

congestion mitigation. 

E.1.1.3 Route Selection Probability Model: 
 

  𝐶𝐶𝑖𝑖  =  𝐶𝐶−�𝜆𝜆∗ (𝐶𝐶𝑖𝑖−𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚)� / 𝛴𝛴(𝐶𝐶−�𝜆𝜆∗ (𝐶𝐶𝑖𝑖−𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚)�) (39) 
 

where: 𝐶𝐶𝑖𝑖 is probability of selecting route 𝑎𝑎; 𝐶𝐶𝑖𝑖 - cost of route 𝑎𝑎 (e.g., travel time); 𝐶𝐶𝑚𝑚𝑖𝑖𝑈𝑈 - minimum cost among all routes; 𝜆𝜆 - control parameter adjusting the sensitivity to cost 

differences. 

E.1.1.4 Adaptive Traffic Signal Control Model: 
 

  𝐷𝐷𝑖𝑖(𝑜𝑜+1)  =  𝐷𝐷𝑖𝑖(𝑜𝑜)  +  𝜂𝜂 ∗  (𝑄𝑄𝑖𝑖(𝑜𝑜)  −  𝑄𝑄𝑖𝑖(𝑜𝑜−1) ) (40) 
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where: 𝐷𝐷𝑖𝑖(𝑜𝑜+1) is green time for signal 𝑎𝑎 in the next time period; 𝐷𝐷𝑖𝑖(𝑜𝑜) - green time for signal 𝑎𝑎 in the current time period; 𝑄𝑄𝑖𝑖(𝑜𝑜) - traffic queue length at signal 𝑎𝑎 in the current time period; 𝑄𝑄𝑖𝑖(𝑜𝑜−1) - traffic queue length at signal 𝑎𝑎 in the previous time 

period; 𝜂𝜂 - learning rate. 

These formulas support the implementation of Traffic Flow Controlling Models with 

a focus on Dynamic Route Guidance in Intelligent Transportation Systems. 

E.1.2 Traffic Flow Controlling Models with a focus on Traffic Signal Optimization

E.1.2.1 Traffic Signal Timing Adjustment Model:𝑇𝑇𝑖𝑖  =  𝑇𝑇𝑖𝑖  +  𝛥𝛥𝑇𝑇𝑖𝑖  (41) 

where: 𝑇𝑇𝑖𝑖 is current timing plan for traffic signal 𝑎𝑎 𝛥𝛥𝑇𝑇𝑖𝑖 - adjustment to the timing plan for traffic signal 𝑎𝑎. 
E.1.2.2 Traffic Signal Cycle Length Optimization Model:𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜  =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐶𝐶𝑄𝑄) (42) 

where: 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 is optimized cycle length for traffic signals; 𝐶𝐶𝑄𝑄 - cycle length for traffic signals; 

argmin - argument that minimizes the cycle length. 

E.1.2.3 Green Split Ratio Adjustment Model:𝐷𝐷𝑇𝑇𝑖𝑖  =  𝐷𝐷𝑇𝑇𝑖𝑖 +  𝛥𝛥𝐷𝐷𝑇𝑇𝑖𝑖  (43) 

where: 𝐷𝐷𝑇𝑇𝑖𝑖 is current green split ratio for phase 𝑎𝑎; 𝛥𝛥𝐷𝐷𝑇𝑇𝑖𝑖 - adjustment to the green split ratio for phase 𝑎𝑎. 
E.1.2.4 Traffic Signal Coordination Model:𝛥𝛥𝑅𝑅𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶 =  𝑓𝑓(𝑇𝑇,𝐶𝐶) (44) 

where: 𝛥𝛥𝑅𝑅𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶 is adjustment to the offset between traffic signals; 𝑇𝑇 - traffic flow characteristics (e.g., volume, speed) at each 

intersection; 𝐶𝐶 - coordination parameters (e.g., cycle length, green split 

ratios). 

E.1.3 Traffic Flow Controlling Models with a focus on Proactive Resource Allocation

E.1.3.1 Proactive Resource Allocation:𝑅𝑅 = 𝑓𝑓(𝑇𝑇,𝐻𝐻,𝐶𝐶, 𝑇𝑇) (45) 

where: 𝑅𝑅 is resource allocation for traffic flow control; 
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𝑇𝑇 - traffic flow characteristics (e.g., volume, speed, density) at different 

locations; 𝐻𝐻  - demand patterns and forecasts for various routes or areas; 𝐶𝐶  - prioritized objectives and performance metrics (e.g., minimizing 

delays, maximizing throughput); 𝑇𝑇 - available resources and their capacities (e.g., number of traffic signals, 

lane configurations). 
 

E.1.3.2 Explanation. The formula represents the proactive allocation of resources (R) for 

traffic flow control based on several factors: 

Traffic Flow Characteristics (T). This involves up-to-the-minute information on traffic 

flow volume, vehicle speeds, and congestion levels at various points across the transportation 

network. These details are instrumental in evaluating present traffic conditions and 

pinpointing areas of congestion. 

Demand Patterns (D). Information about historical traffic patterns, anticipated changes 

in demand, and forecasts for future traffic conditions. This allows for proactive planning to 

address potential congestion or disruptions. 

Prioritized Objectives (P). Defined goals and performance metrics for traffic 

management, such as minimizing travel time, reducing congestion, improving safety, or 

optimizing resource utilization. These objectives guide the resource allocation strategy. 

Available Resources (S). Inventory of available resources for traffic control, including 

traffic signals, surveillance cameras, variable message signs, dynamic lane control systems, 

etc. Understanding the capabilities and capacities of these resources enables effective 

allocation to meet the identified objectives. 
 

E.1.3.3 Function f. The function f represents the relationship between the input 

variables (T, D, P, S) and the allocation of resources (R). 

It involves algorithms, optimization techniques, or decision-making processes to 

determine the optimal allocation strategy based on the current traffic conditions, anticipated 

demand, management objectives, and resource constraints. 

The function f may utilize techniques such as machine learning, optimization 

algorithms, or simulation models to dynamically adjust resource allocations in response to 

changing traffic dynamics and operational requirements. 
 

E.1.3.4 Objective. The objective of proactive resource allocation is to efficiently manage 

traffic flow, optimize the utilization of available resources, and achieve the specified 

performance goals. 

By proactively allocating resources based on real-time and forecasted data, 

transportation agencies can effectively mitigate congestion, improve traffic flow, enhance 

safety, and provide better travel experiences for road users. 

This model enables proactive traffic flow management through real-time resource 

allocation, adapting to current traffic conditions, projected demand, operational goals, and 

available resources. This approach enhances the efficiency and effectiveness of traffic 

management operations within an Intelligent Transportation System (ITS) framework. 
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E.2 Manageability as overseeing function in Intelligent Transportation Systems 

considering "unknown in decision making process" and "unstable and with large uncertainty 

situation" 

The study [23] suggests a method for controlling vehicle trajectories during lane 

changes using a combination of extended Kalman filter (EKF) and robust tube-based model 

predictive control (RTMPC) techniques to enhance resistance to disturbances. A polynomial 

function based on time is used to plot trajectories and determine a preferred reference path. 

The planned trajectory is then fed into the model predictive controller (MPC) within the 

RTMPC framework to optimize control of the nominal system. The EKF gathers current state 

measurements and previous state estimates, filtering them to yield optimal estimates of the 

current state. These estimates, along with the nominal system state, inform the auxiliary 

control law within RTMPC for controlling the actual system. 

The research [24] introduces a hierarchical control framework that utilizes vehicle 

trajectory data to address network traffic congestion at bottlenecks. Initially, the bottleneck-

related sub-network (BRS) is identified by tracing vehicle trajectories upstream and 

downstream of the bottleneck. Subsequently, a hierarchical control framework is proposed 

for optimizing BRS. The outer layer, known as the gating control layer, employs a 

multimemory deep Q-network approach to regulate multigated intersections within BRS, 

optimizing network traffic distribution. Meanwhile, the inner layer, referred to as the 

coordinated control layer, coordinates local intersection controllers by adjusting dynamic 

input and output streams of the bottleneck, guided by the outer layer controller. This 

coordination aids in balancing traffic pressure within BRS and prevents congestion from 

spreading throughout the network. Both simulation and field experiments validate the 

efficacy of the hierarchical framework, demonstrating reduced queue length and travel time, 

effectively alleviating network traffic congestion. 

The study [25] proposes a unified strategy for the cooperative optimization of 

pedestrian control patterns and signal timing plans to improve the efficiency and safety of 

pedestrian–vehicle mixed traffic flow. The existing control patterns, such as EPPs, LPIs, and 

two-way crossing (TWC), are unified. The safety and efficiency costs are monetized, and the 

minimization of average costs per traffic participant is taken as the optimization objective. 

Additionally, decision variables for diagonal crossing at intersections and pedestrian–vehicle 

priority are introduced to achieve cooperative optimization of the pedestrian control patterns 

and signal timing plans. The proposed model parameters were calibrated and validated using 

a real-world case study, and the applicable boundaries of different pedestrian control 

patterns under different pedestrian and vehicle flow scenarios were identified based on cost 

difference analysis. The results indicate that the vehicle turn ratio, average vehicle carrying 

rate, and unit cost ratio dynamically change the applicable boundaries. On average, the 

proposed method reduced the cost by 2.62% compared with separately optimized EPPs, LPIs, 

and TWC across various scenarios. 

The investigation [26] introduces two straightforward adaptable control strategies 

that merely require sample delay and the count of stops, aiming to alleviate oversaturation 

issues. The simplicity arises from the necessity of managing under any trajectory penetration 

rate. These two strategies vary in the feasibility of implementing the control infrastructure. 

The initial strategy aims to minimize oversaturation by deviating from a predetermined 

reference signal plan, which can either be an existing one or estimated from aggregated 

trajectory data. The alternative approach first establishes a series of green split plans, 
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subsequently chosen by a control mechanism. This latter strategy is designed for use in 

systems where signal plans are confined to a predetermined discrete set. In the work is 

proposed selection logic for plan choices, or alternatively, the original selection policy can 

also be applied. Both strategies are field-tested, demonstrating significant reductions in 

delay, oversaturation, and spill over rates. 

According to the works mentioned above and the ideas of the authors pondering the 

monitoring and control processes within Intelligent Transportation Systems may not account 

for all potential factors. These factors could include: 

E.2.1 Real-Time Traffic Conditions. Unpredicted changes in traffic volume, congestion 

levels, or incidents can occur, affecting the effectiveness of resource allocation decisions. 

E.2.2 Resource Availability. The availability of resources such as lanes, routes, and traffic 

signals may fluctuate due to unexpected events like maintenance activities or emergencies, 

affecting proactive resource allocation plans. 

E.2.3 Weather Conditions. Sudden weather changes, such as rain, snow, or fog, can 

influence traffic flow and resource utilization, posing challenges for proactive allocation 

strategies. 

E.2.4 Incident Response Time. The duration required to detect and react to incidents, 

such as accidents or road closures, can vary and might interfere with planned resource 

allocation strategies. 

E.2.5 User Behavior: Unpredictable behavior among road users, such as sudden changes 

in travel patterns or preferences, can affect the effectiveness of resource allocation strategies. 

E.2.6 Infrastructure Changes. Unexpected changes in road infrastructure, such as 

construction work or road closures, may require adjustments in resource allocation plans to 

accommodate altered traffic patterns. 

E.2.7 Emergency Situations. Emergencies like natural disasters or security incidents can 

lead to sudden changes in traffic demand and require rapid adjustments in resource allocation 

to ensure efficient traffic flow. 

E.2.8 Data Accuracy. Inaccuracies or delays in obtaining real-time traffic data from 

sensors or other sources can hinder the effectiveness of proactive resource allocation models. 

E.2.9 Technological Failures. Malfunctions in Intelligent Transportation Systems 

components, such as traffic sensors or control systems, can disrupt the execution of proactive 

resource allocation strategies. 

E.2.10 Regulatory Changes. Changes in traffic regulations or policies may impact traffic 

behavior and necessitate adaptations in resource allocation plans to maintain manageability 

and efficiency in transportation systems. 

The factors identified above highlight the need for robust and adaptable resource 

allocation models within Intelligent Transportation Systems. By incorporating methods to 

handle uncertainty, these systems can become more responsive to real-time conditions and 

improve overall traffic management. 
 

F.1  Manageability as optimizing decision-making processes within Intelligent 

Transportation Systems from the view of “knowledge in decision making process” and “stable 

and known situation" 

This section explores various traffic flow decision-making models used in Intelligent 

Transportation Systems (ITS) with a focus on Dynamic Route Guidance (DRG), Traffic Signal 

Optimization, and Proactive Resource Allocation. These models incorporate both historical 



Models for real-time traffic flow manageability and decision-making in intelligent transportation systems 61 

Journal of Social Sciences September, 2024, Vol. 7 

data and real-time traffic information for optimal decision-making and improved traffic 

management. 

F.1.1 Traffic Flow Decision Making Model

F.1.1.1 Traffic Flow Decision Making Model: Dynamic Route Guidance (DRG)𝐻𝐻𝑅𝑅𝐷𝐷 = 𝑓𝑓(𝑇𝑇,𝑅𝑅,𝐻𝐻) , (46) 

where: 𝐻𝐻𝑅𝑅𝐷𝐷 - decision-making related to Dynamic Route Guidance DFG; 𝑇𝑇 - traffic conditions, including factors such as congestion levels, traffic speed, 

and road closures; 𝑅𝑅 - route options available to the vehicle or driver; 𝐻𝐻 - decision parameters, which may include preferences such as shortest 

route, fastest route, or route with least congestion. 

F.1.1.1.1 Explanation. The formula calculates the decision-making process related to

dynamic route guidance based on various factors: 

Traffic Conditions (T). Real-time information about traffic conditions, including 

congestion levels, traffic speed, accidents, and road closures, obtained from sensors, cameras, 

or traffic management systems. 

Route Options (R). The available routes that the vehicle or driver can choose from, 

which may vary based on road network topology and current traffic conditions. 

Decision Parameters (D). Preferences or criteria used to make routing decisions, such as 

minimizing travel time, avoiding toll roads, or prioritizing certain roads based on traffic 

conditions. 

F.1.1.1.2 Function f. The function f represents the decision-making process that

evaluates traffic conditions, available route options, and decision parameters to determine 

the optimal route guidance for vehicles. DRG systems use algorithms that analyze real-time 

traffic data and user preferences to provide personalized route recommendations to drivers, 

aiming to minimize travel time and improve overall traffic flow. 

F.1.1.1.3 Benefits. DRG systems help drivers make informed decisions by providing

real-time route recommendations based on current traffic conditions. 

Integrating decision-making models into transportation systems can streamline 

traffic flow, alleviate congestion, and improve the operational efficiency of road networks. 

F.1.1.2 Traffic Flow Decision Making Model: Dynamic Route Guidance𝐶𝐶(𝑅𝑅𝑖𝑖/𝑇𝑇)  =  (𝐶𝐶(𝑇𝑇/𝑅𝑅𝑖𝑖) × 𝐶𝐶(𝑅𝑅𝑖𝑖))/𝐶𝐶(𝑇𝑇) (47) 

where: 𝐶𝐶(𝑅𝑅𝑖𝑖/𝑇𝑇) is probability of route 𝑅𝑅𝑖𝑖 given the observed traffic conditions 𝑇𝑇. 

P(T/Ri) - likelihood of observing the traffic conditions 𝑇𝑇 given the route 𝑅𝑅𝑖𝑖 . 
P(𝑅𝑅𝑖𝑖)- prior probability of selecting route 𝑅𝑅𝑖𝑖 without considering traffic 

conditions. 𝐶𝐶(𝑇𝑇) - total probability of observing the traffic conditions T. 

F.1.1.2.1 Explanation. The formula calculates the probability of selecting each route 𝑅𝑅𝑖𝑖
given the observed traffic conditions 𝑇𝑇 using Bayes' theorem. 
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Likelihood P(T/Ri). This term represents the probability of observing the specific traffic 

conditions T given the selected route Ri. It accounts for how likely it is to encounter certain 

traffic conditions along each route. 

Prior Probability (P(𝑅𝑅𝑖𝑖). This term represents the probability of selecting each route 𝑅𝑅𝑖𝑖 
without considering traffic conditions. It reflects any biases or preferences towards certain 

routes. 

Total 𝐶𝐶𝑎𝑎𝐶𝐶𝑂𝑂𝑎𝑎𝑂𝑂𝑎𝑎𝑇𝑇𝑎𝑎𝐶𝐶𝐷𝐷 𝐶𝐶(𝑇𝑇). This term represents the total probability of observing the 

traffic conditions 𝑇𝑇, considering all possible routes. It acts as a normalization factor. 

F.1.1.2.2 Bayes' Theorem. Bayes' theorem provides a way to update our beliefs (prior

probabilities) about the occurrence of an event (selecting a route) based on new evidence 

(observed traffic conditions). By applying Bayes' theorem in the context of dynamic route 

guidance, we can estimate the likelihood of each route given the current traffic conditions, 

helping in decision-making. 

F.1.1.2.3 Application. The Bayes probabilistic model can enhance Dynamic Route

Guidance systems by dynamically adapting route suggestions according to current traffic 

data. By continually updating route probabilities based on real-time traffic conditions, the 

system can direct drivers to optimal routes, taking into account variables like congestion 

levels, road closures, and travel duration. 

F.1.1.2.4 Benefits. Utilizing Bayes' theorem enables Dynamic Route Guidance systems

to make informed decisions by incorporating both prior knowledge and current observations. 

This approach enhances the adaptability and effectiveness of route guidance systems in 

response to changing traffic conditions, leading to improved traffic flow and reduced travel 

time for drivers. 

F.1.2.1 Traffic Flow Decision Making Model: Traffic Signal Optimization𝐶𝐶(𝑅𝑅𝐶𝐶𝐶𝐶|𝑇𝑇)  =  (𝐶𝐶(𝑇𝑇|𝑅𝑅𝐶𝐶𝐶𝐶) × 𝐶𝐶(𝑅𝑅𝐶𝐶𝐶𝐶))/𝐶𝐶(𝑇𝑇), (48) 

where: 𝐶𝐶(𝑅𝑅𝐶𝐶𝐶𝐶/𝑇𝑇) is probability of optimizing traffic signals given the observed traffic 

conditions 𝑇𝑇; 𝐶𝐶(𝑇𝑇/𝑅𝑅𝐶𝐶𝐶𝐶) - likelihood of observing the traffic conditions 𝑇𝑇 given the 

optimization of traffic signals; 𝐶𝐶(𝑅𝑅𝐶𝐶𝐶𝐶) - prior probability of optimizing traffic signals without considering 

traffic conditions; 𝐶𝐶(𝑇𝑇) - total probability of observing the traffic conditions 𝑇𝑇. 

F.1.2.1.1 Explanation: The formula calculates the probability of optimizing traffic

signals given the observed traffic conditions T using Bayes' theorem. 

Likelihood (𝐶𝐶(𝑇𝑇/𝑅𝑅𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑈𝑈𝑎𝑎𝐶𝐶𝑎𝑎𝐶𝐶𝑎𝑎)). This term represents the probability of observing the 

specific traffic conditions T given the optimization of traffic signals. It accounts for how likely 

it is to encounter certain traffic conditions when traffic signals are optimized. 

Prior Probability (𝐶𝐶(𝑅𝑅𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑈𝑈𝑎𝑎𝐶𝐶𝑎𝑎𝐶𝐶𝑎𝑎)) . This term represents the prior probability of 

optimizing traffic signals without considering traffic conditions. It reflects any biases or 

preferences towards traffic signal optimization. 

Total Probability (𝐶𝐶(𝑇𝑇)). This term represents the total probability of observing the 

traffic conditions T, considering all possible scenarios. It acts as a normalization factor. 
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F.1.2.1.2 Bayes' Theorem. Bayes' theorem provides a way to update our beliefs (prior 

probabilities) about the occurrence of an event (optimizing traffic signals) based on new 

evidence (observed traffic conditions). By applying Bayes' theorem in the context of traffic 

signal optimization, we can estimate the likelihood of optimizing traffic signals given the 

current traffic conditions, aiding decision-making. 

F.1.2.1.3 Application. The Bayes probabilistic model can be integrated into Traffic 

Signal Optimization systems to dynamically fine-tune signal timings based on real-time 

traffic data. By consistently updating the probability of optimizing traffic signals through 

observed traffic conditions, the system can intelligently adjust to enhance traffic flow 

efficiency and alleviate congestion at intersections. 

F.1.2.1.4 Benefits. Utilizing Bayes' theorem enables Traffic Signal Optimization systems 

to make data-driven decisions by considering both prior knowledge and current observations. 

This method improves the efficiency of traffic signal timing strategies, resulting in smoother 

traffic flow, decreased wait times, and enhanced overall management of traffic. 
 

F.1.3.1 Traffic Flow Decision Making Model: Proactive Resource Allocation 
 

 𝐶𝐶(𝐴𝐴𝑇𝑇𝑇𝑇𝐶𝐶𝐷𝐷𝑎𝑎𝐶𝐶𝑎𝑎𝐶𝐶𝑎𝑎 | 𝐻𝐻)  =  (𝐶𝐶(𝐻𝐻 | 𝐴𝐴𝑇𝑇𝑇𝑇𝐶𝐶𝐷𝐷𝑎𝑎𝐶𝐶𝑎𝑎𝐶𝐶𝑎𝑎)  ∗  𝐶𝐶(𝐴𝐴𝑇𝑇𝑇𝑇𝐶𝐶𝐷𝐷𝑎𝑎𝐶𝐶𝑎𝑎𝐶𝐶𝑎𝑎)) / 𝐶𝐶(𝐻𝐻) , (49) 
 

where:  𝐶𝐶(𝐴𝐴𝑇𝑇𝑇𝑇𝐶𝐶𝐷𝐷𝑎𝑎𝐶𝐶𝑎𝑎𝐶𝐶𝑎𝑎/𝐻𝐻) is probability of allocating resources given the observed data 𝐻𝐻; 𝐶𝐶(𝐻𝐻/𝐴𝐴𝑇𝑇𝑇𝑇𝐶𝐶𝐷𝐷𝑎𝑎𝐶𝐶𝑎𝑎𝐶𝐶𝑎𝑎) - likelihood of observing the data 𝐻𝐻 given the resource 

allocation; 𝐶𝐶(𝐴𝐴𝑇𝑇𝑇𝑇𝐶𝐶𝐷𝐷𝑎𝑎𝐶𝐶𝑎𝑎𝐶𝐶𝑎𝑎) - prior probability of resource allocation without considering the 

observed data; 𝐶𝐶(𝐻𝐻) - total probability of observing the data 𝐻𝐻. 
 

F.1.3.1.1 Explanation. The formula calculates the probability of allocating resources 

given the observed data D using Bayes' theorem. 𝑄𝑄𝑎𝑎𝐷𝐷𝐶𝐶𝑇𝑇𝑎𝑎ℎ𝐶𝐶𝐶𝐶𝐷𝐷 (𝐶𝐶(𝐻𝐻/𝐴𝐴𝑇𝑇𝑇𝑇𝐶𝐶𝐷𝐷𝑎𝑎𝐶𝐶𝑎𝑎𝐶𝐶𝑎𝑎)). This term represents the probability of observing the 

specific data D given the allocation of resources. It accounts for how likely it is to encounter 

certain data when resources are allocated. 𝐶𝐶𝑎𝑎𝑎𝑎𝐶𝐶𝑎𝑎 𝐶𝐶𝑎𝑎𝐶𝐶𝑂𝑂𝑎𝑎𝑂𝑂𝑎𝑎𝑇𝑇𝑎𝑎𝐶𝐶𝐷𝐷 (𝐶𝐶(𝐴𝐴𝑇𝑇𝑇𝑇𝐶𝐶𝐷𝐷𝑎𝑎𝐶𝐶𝑎𝑎𝐶𝐶𝑎𝑎)).  This term represents the prior probability of 

allocating resources without considering the observed data. It reflects any biases or 

preferences towards resource allocation. 𝑇𝑇𝐶𝐶𝐶𝐶𝑎𝑎𝑇𝑇 𝐶𝐶𝑎𝑎𝐶𝐶𝑂𝑂𝑎𝑎𝑂𝑂𝑎𝑎𝑇𝑇𝑎𝑎𝐶𝐶𝐷𝐷 (𝐶𝐶(𝐻𝐻)). This term represents the total probability of observing the 

data D, considering all possible scenarios. It acts as a normalization factor. 

F.1.3.1.2 Bayes' Theorem. Bayes' theorem provides a way to update our beliefs (prior 

probabilities) about the occurrence of an event (allocating resources) based on new evidence 

(observed data). By applying Bayes' theorem in the context of proactive resource allocation, 

we can estimate the likelihood of allocating resources given the current data, aiding decision-

making. 

F.1.3.1.3 Application. The Bayes probabilistic model can be implemented in Intelligent 

Transportation Systems for proactive resource allocation, such as dispatching emergency 

services, adjusting traffic signal timings, or deploying maintenance crews. By dynamically 

adjusting resource allocation based on real-time data updates, the system can make well-
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informed decisions to maximize resource efficiency and enhance overall transportation 

effectiveness. 

F.1.3.1.4 Benefits. Utilizing Bayes' theorem enables Intelligent Transportation Systems

to make data-driven decisions about resource allocation by considering both prior knowledge 

and current observations. This approach enhances the effectiveness of resource allocation 

strategies, leading to improved response times, reduced congestion, and enhanced safety on 

roadways. 

By incorporating Bayes' theorem into decision-making models for traffic flow, 

Intelligent Transportation Systems can leverage both historical data and real-time 

information to dynamically optimize traffic flow, signal timing, and resource allocation, 

ultimately leading to a more efficient and adaptable transportation network. 

F.2 Manageability as optimizing decision-making processes within Intelligent

Transportation Systems from the view of "unknown in decision making process" and 

"unstable and with large uncertainty situation" 

In pursuit of enhancing interaction amid intelligent autos and human operators, the 

investigation [27] advocates for the MCLG (multi-head scrutiny + convolutional communal 

pooling + long-term transient recollection + Gaussian amalgam model) trajectory anticipation 

and lane alteration decision model, featuring a lane modification intent determination 

module. This model encompasses a lane modification decision component accountable for 

discerning three lane alteration intents: leftward lane change, rightward lane change, and 

vehicle trailing. Subsequently, a multi-head scrutiny apparatus processes intricate vehicular 

interaction data to boost modeling precision and intellect. Moreover, uncertainty in trajectory 

anticipation is addressed via multimodal trajectory anticipation and Gaussian amalgam 

model, with diversity and uncertainty amalgamated by fusing trajectory anticipation from 

varied modalities through probabilistic compositive sampling configurations. Evaluation 

outcomes reveal that the MCLG model, grounded on the multi-head scrutiny module, 

surpasses extant techniques in trajectory anticipation. The decision module, incorporating 

interactive data, displays superior predictability and precision. Furthermore, the MCLG model, 

contemplating the lane-modifying decision module, substantially amplifies trajectory 

anticipation precision, furnishing robust decision-making endorsement for self-directed 

driving systems. 

Overtaking maneuvers pose significant risks for road vehicles, particularly on two-way 

roads. The paper [28] introduces a novel approach to overtaking in two-way road scenarios 

using principles derived from the Mixed Observable Markov Decision Process (MOMDP). This 

innovative formulation enables the determination of optimal strategies while accounting for 

inherent uncertainties in the overtaking problem. Despite the computational challenges 

associated with Markov-based decision processes, advancements in solver efficiency and 

computational technology demonstrate the viability of these approaches for addressing 

overtaking scenarios. Through simulations, the proposed MOMDP method is evaluated 

against stochastic-variant Markov Decision Process (MDP) and traditional time to collision 

(TTC) methodologies, displaying superior performance by reducing collision risks and 

overtaking durations. 

Optimizing an intra-city express delivery network by reducing its levels from three to 

two holds significant appeal for suppliers and customers aiming to cut costs and enhance 

service efficiency. While one potential solution involves identifying key nodes within the 
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existing three-tier network and upgrading them to serve as transshipment hubs in the 

simplified two-tier system, conventional optimization approaches often overlook the 

integration of empirical business data, composite metrics, and objective evaluation criteria. 

To address this gap, study [29] proposes an integrated approach that combines empirical data 

analysis, multi-criteria decision-making techniques, and mathematical optimization 

modeling, drawing insights from real-world applications at the SF Express Chengdu branch. 

By leveraging multiple centrality assessments from complex network theory and employing 

fuzzy Technique for Order Preference by Similarity to an Ideal Solution, authors of the study 

evaluate the suitability of candidate service points as potential transshipment facilities from 

both internal and external perspectives. Subsequently, they identify 16 optimal 

transshipment facility locations using a combination of these assessments, followed by the 

development of a multi-objective integer-programming model to determine the optimal 

number and coverage of service points for each transshipment facility. Multi-methodological 

approach demonstrates that the optimized two-tier network offers economic feasibility and 

practical applicability, resulting in an 18.41% reduction in total costs and a 6-hour decrease 

in average delivery time. This research holds practical significance and serves as a valuable 

reference for streamlining ground express service networks in large urban centers. 

Integrated into the surface transportation system are connected and automated 

vehicles (CAVs), which rely on a wealth of information for safe operation, including both static 

data such as high-resolution navigation maps and real-time sensor inputs. These navigation 

maps, equipped with historical driving data, collaborate with sensors to assist CAVs in 

proactive maneuver planning, offering insights into driving behaviors at specific locations 

along routes. Pre-installing records of historical driving decisions can preemptively alert CAVs 

and drivers alerted to potential hazards, enhancing informed decision-making. The study [30] 

investigates the role of location-based driving volatility, measured by the frequency of 

extreme maneuvers at specific points in the road network, as a means of bolstering safety in 

CAV navigation. Through modeling and visualization of real-world data obtained from a 

connected vehicle safety program in Ann Arbor, Michigan, authors of the study demonstrate 

the significance of location-based volatility in predicting safety outcomes, suggesting its 

utility as a valuable addition to CAV navigation maps. 

Unforeseen factors described in the above works within the decision-making process 

of Intelligent Transportation Systems (ITS) can negatively affect manageability if they remain 

undetected. Here they are: 

F.2.1 Real-time sensor accuracy. The accuracy of sensor data, including traffic flow,

weather conditions, and vehicle speed, may be unknown, influencing the reliability of 

predictions. 

F.2.2 Weather unpredictability. Sudden weather changes, such as storms or heavy

rainfall, can affect traffic conditions unpredictably, leading to uncertainty in traffic flow 

predictions. 

F.2.3 Sensor malfunction: Malfunctioning sensors or data transmission errors can result

in missing or erroneous data, affecting the quality of traffic flow predictions. 

F.2.4 Road construction activities. Unforeseen road construction projects or closures

may disrupt traffic patterns, introducing uncertainty into traffic flow predictions. 

F.2.5 Vehicle breakdowns. Unexpected vehicle breakdowns or accidents can cause

sudden changes in traffic flow, which may not be accounted for in prediction models. 
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F.2.6 Human behavior. Unpredictable driver behavior, such as sudden lane changes or 

reckless driving, can impact traffic flow and introduce uncertainty into prediction models. 

F.2.7 Emergencies. Unexpected emergencies, like accidents or medical incidents, have 

the potential to disturb traffic patterns and cause unforeseen delays. 

F.2.8 Traffic incidents. Unexpected traffic incidents, such as car crashes or spills of 

hazardous materials, can severely disrupt traffic flow and impact the precision of traffic 

predictions. 

F.2.9 External events. Events like sports games, concerts, or protests can lead to 

unexpected increases in traffic volume, influencing traffic flow predictions. 

F.2.10 System errors. Errors in prediction algorithms or model assumptions may result 

in inaccurate traffic flow predictions, especially in unstable or uncertain situation 

These formulas can help organizations gain better visibility into their forecasting, 

planning, organizing, implementing, controlling and decision-making processes and identify 

areas for improvement. However, it is important to note that these formulas should be used 

in conjunction with other management tools and techniques to gain a complete 

understanding of manageability in the organization as mentioned above the factors that 

reduce the power, validity and application of formulas. 
 

3. Results and Discussion 

The exploration of traffic flow decision-making models within Intelligent 

Transportation Systems (ITS) demonstrates the efficacy of incorporating historical data and 

real-time information for optimal decision-making and traffic management. Models such as 

Dynamic Route Guidance, Traffic Signal Optimization, and Proactive Resource Allocation 

leverage these inputs to enhance efficiency and adaptability in traffic management. By 

applying Bayes' theorem, these models can adapt recommendations and allocations in real-

time using observed data, resulting in smoother traffic flow, decreased congestion, and 

enhanced safety. However, challenges arise when variables influencing decision-making are 

uncertain or fluctuating. Factors like real-time sensor precision, unpredictable weather 

conditions, and human behavior introduce variability into prediction models, affecting their 

reliability. Addressing these challenges is essential to ensure the dependability and efficiency 

of Intelligent Transportation Systems in dynamic and uncertain conditions. 

Leveraging the classification scheme established within our research framework, we 

will conduct a secondary data analysis to evaluate the alignment between our hypothesis and 

findings reported in prior study by [31], for Intelligent Transportation Systems. 

In order to devise Traffic Flow Prediction Models based on the furnished dataset 

information, diverse methodologies can be employed, including time series analysis, machine 

learning algorithms, and deep learning models. We will employ our hypothesis about 

applicability of Bayes' theorem to analyze route selection, as proposed in the section "F.1.1.2 

Traffic Flow Decision Making Model: Dynamic Route Guidance", formula [47]. The probability 

of selecting Route RF at P/Castellana station, considering traffic conditions (T) and decision 

parameters (D), will be computed using Bayes' theorem. 

Bayes' theorem calculates the conditional probability of an event (selecting Route RF) 

given another event (specific traffic conditions) and prior knowledge. The formula is: 
 

  𝐶𝐶(𝑅𝑅𝐹𝐹/𝑇𝑇,𝐻𝐻)  =  [𝐶𝐶(𝑇𝑇/𝑅𝑅𝐹𝐹,𝐻𝐻) × (𝑅𝑅𝐹𝐹/𝐻𝐻)]/𝐶𝐶(𝑇𝑇/𝐻𝐻) (50) 
 

where: 
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𝐶𝐶(𝑅𝑅𝐹𝐹/𝑇𝑇,𝐻𝐻) is probability of selecting Route 𝑅𝑅𝐹𝐹 given traffic conditions 𝑇𝑇 and 

decision parameters 𝐻𝐻; 𝐶𝐶(𝑇𝑇/𝑅𝑅𝐹𝐹,𝐻𝐻) - likelihood of observing traffic conditions 𝑇𝑇 given Route 𝑅𝑅𝐹𝐹 and 

decision parameters 𝐻𝐻; 𝐶𝐶(𝑅𝑅𝐹𝐹/𝐻𝐻) - prior probability of selecting Route 𝑅𝑅𝐹𝐹 given decision parameters 𝐻𝐻; 𝐶𝐶(𝑇𝑇/𝐻𝐻) - total probability of observing traffic conditions 𝑇𝑇 given decision 

parameters 𝐻𝐻. 

Using average values from Tables 2 to 6 for P/Castellana station [31], yields: 

P(T/RF,D) = 0.807 (Mean Max 12 h) - probability of traffic conditions T given Route RF 

and decision parameters D (from Table 2). 

P(RF/D) = 0.775 (Mean Max 12 h) - prior probability of selecting Route RF given 

decision parameters D (from Table 2). 

P(T/D) = 0.829 (Mean Max 12 h) - total probability of observing traffic conditions T 

given decision parameters D (assumed value). 

The values are substituted into the formula: 
 

  𝐶𝐶(𝑅𝑅𝐹𝐹/𝑇𝑇,𝐻𝐻)  ≈  (0.807 × 0.775)/0.829 ≈  0.759 (51) 
 

Based on Bayes' theorem, the calculated probability of selecting Route RF given 

specific traffic conditions and decision parameters is approximately 75.9%. However, this 

value differs from the actual probability provided by the data (approximately 65.58%).  

The authors recognize the presence of a potential difference between the calculated 

and observed probability values. This divergence may be attributed to a number of factors, 

including: 

Limited Scope of the Comparison. The data used for comparison may not fully 

encompass the range of conditions considered by the researchers conducting the study or the 

model developers. 

Model Simplifications. The computational model employed might have necessarily 

simplified certain aspects of route selection, potentially influencing the final probability 

calculations. 

Evaluation of Results. The authors acknowledge the potential disparity in probability 

values, attributing it to factors undisclosed in comparison to the researchers conducting the 

study. Nevertheless, we deem the obtained results as acceptable, corroborating our 

hypothesis.  

Leveraging the data presented in current section and in Tables 1-6 [18], the following 

conclusions can be drawn regarding our hypothesis: 

Conclusion 1. Under conditions of high manageability (stable and known situations), 

the application of formulas for decision-making in Intelligent Transportation Systems (ITS) is 

well-justified. 

Conclusion 2. Under conditions of low manageability (unstable and highly uncertain 

situations), Intelligent Transportation Systems employing judgment-based strategies are 

likely to be better equipped to navigate challenges and uncertainties. 

Our hypothesis regarding manageability in two distinct states ("stable and known 

situation" and "unstable and highly uncertain situation") finds substantial support from the 

analyzed data and existing research. However, limitations exist within highly uncertain 

situations. Further research is needed to develop more specific hypotheses tailored to these 
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conditions and to validate or reject them through rigorous testing. We believe this study 

provides a foundation for further investigation and exploration within this domain. 
 

4. Conclusions 

The presented study aimed to identify the dichotomous scenarios influencing 

Intelligent Transportation Systems efficacy and identify models for real-time traffic flow 

manageability and decision-making in Intelligent Transportation Systems. The proposed 

models highlights two key determinants impacting an Intelligent Transportation System’s 

manageability: 

I. Definite Knowledge, Stable Situations: When decision-making relies on well-defined 

algorithms and occurs within predictable contexts, manageability is maximized. 

II. Uncertain Knowledge, Unstable Situations: Conversely, when decision-making is 

characterized by ambiguity and unfolds under unpredictable circumstances, manageability is 

reduced. 

However, it is crucial to acknowledge the inherent limitations of real-world decision-

making environments, especially within Intelligent Transportation Systems. While algorithms 

can be powerful tools, they are incapable of capturing the numerous complexities inherent 

to real-world scenarios, such as temporal constraints, resource scarcity, and ethical dilemmas. 

The proposed models functions as a conceptual framework for managers, facilitating 

their navigation managing Intelligent Transportation Systems. Managers within Intelligent 

Transportation Systems are encouraged to: 

1. Evaluate the Situation: Ascertain the level of predictability within the scenario. 

2. Adapt the Model: Modify, combine, or develop new models to address specific 

requirements. 

3. Utilize Experience and Judgment: Leverage their expertise and ethical compass to 

scrutinize, judge, and formulate optimal courses of action. 

The interplay between the models and the prevailing environment is dynamic, 

necessitating continuous reassessment and recalibration. Success hinges on achieving a 

harmonious balance between the model's guidance and the unique demands of each 

situation. 

The interplay between the model and actual decision-making is complex, influenced 

by a multitude of variables. While the model aids in identifying manageable scenarios, certain 

situations fall outside its scope. This emphasizes the need for further scholarly exploration 

to unravel the intricacies of decision-making in multifaceted environments. 

While unforeseen difficulties may arise, collaborative efforts guided by ethical 

considerations and resolute action from both traffic managers and traffic participants can 

potentially lead to the achievement of desired outcomes within Intelligent Transportation 

Systems and be extant. 
 

Conflicts of Interest. The authors declare no conflict of interest. 
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