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Abstract — This paper reports the results of numerical 

investigations of the modal behavior of a laser with an external 

feedback. The numerical calculations are based on the solution of 

the homogeneous coupled-wave equations using a transfer 

function approach. We showed that the number of laser modes is 

closely dependent on the material and device parameters as 

transmission and reflection coefficients of laser facets, length of 

active section etc. 
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I. INTRODUCTION 

During recent years semiconductor lasers under the 

influence of an external feedback have attracted attention due 

to its fundamental and applicative interest. A stabilized 

semiconductor diode subject to a proper external feedback 

with stable wavelength is required for various applications in 

spectroscopy, metrology, space communication etc. [1].  The 

stabilization of the wavelength can be achieved by a Bragg 

grating as external mirror. Recently, a new micro-integration 

approach was used to create a compact diode laser with a 

narrow linewidth and an external cavity for the application the 

quantum-optical precise experiments in space [2]. 

A simple model for simulation of the semiconductor laser 

with weak and moderate optical feedback was proposed by 

Lang-Kobayashi (LK) [3]. It constitutes a system of differential 

equations with delay. LK model allows a reasonable qualitative 

agreement with experiments and provides a good 

understanding of the nonlinear dynamics in this device [4]. LK 

approach has also been successfully used to obtain a good 

understanding of the stabilization or destabilization of the 

states of the continuous radiation on different configurations of 

the external cavity [5]. However, the LK model is mainly 

suitable for the study of laser optical system with a small and a 

large feedback relation to the length of the external cavity 

laser. In this case, the length of the emitter can be neglected. 

More appropriate way to describe the dynamics of 

semiconductor lasers with short external cavity is a traveling 

wave model. It represents a differential equation model, which 

includes the spatial distribution of fields [6, 7]. In this paper the 

eigensolutions (modes) and eigenvalues (frequencies) of the 

travelling wave model are calculated.  Our paper is organized 

as follows. In the section II the basic equations is introduced. 

Section III is devoted to the computer simulation and analysis 

of the obtained results. Section IV contains the conclusions. 

II. BASIC EQUATIONS 

We study a three-section external cavity diode laser. Its 

scheme is shown in Fig. 1. It consists of an active section with 

length L1, an air gap with length L2 and a passive section with 

length L3. More details about the laser chip used for the active 

section can be found in [8]. 

 

 
Fig. 1 Scheme of the external cavity diode laser. Rd and Td are the reflection 

and transmission coefficients, respectively, at the facet of the laser chip 

towards the air gap [12]. 

The laser is described by the homogeneous coupled wave 

equations [6, 9, 10] 
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is the relative complex propagation factor with 
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being the Bragg wave vector. 

These equations are solved subject to homogeneous boundary 

conditions at 0z   

0(0) (0) 0a r b  ,    (4) 

and at z L  

( ) ( ) 0,Lb L r a L     (5) 

where here r0 is the reflectivity of the output facet (z=0) and rL 

is the reflectivity of the rear plane of the VHBG (z=L).   

The real part of the relative propagation factor (2) is expanded 

at the reference frequency 0 02 /c   , as follows  
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with   being the relative complex frequencies acting as 

eigenvalues to be determined. In what follows the equation (4) 

is set as an initial condition and (5) is numerically solved by 

Newton's method for given guess values of the relative 

complex frequencies. 

The real part of the derivative of the relative propagation 

factor is given by  
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and as a result the relative propagation factor reads  
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where ng is the group index, Δn is the deviation of the phase 

index from the reference index, g is the gain and α0 are the 

internal optical losses. In what follows the wavelength 

dependence of the gain is neglected. 

The coupling coefficients are given by 
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where the imaginary part κi may be positive or negative (in-

phase or anti-phase gain or loss grating, respectively). The 

phase   can be used to model a phase shift of the grating 

along the cavity and the phase g  describes a phase shift 

between index and gain (loss) coupling. 

 

 

The amplitude reflection coefficients are given by  
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where 0  and L  (in units 2 ) can be used to describe the 

phases of the Bragg grating at the facets, i.e. 
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Here N  is the order of the Bragg grating,   the period and 

0  and L  are the exact positions of the facets relative to the 

Bragg grating. 

At discontinuities dz z  the following transition 

condition is assumed: 
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where r  and t  are the corresponding amplitude reflection 

and transmission coefficients, respectively. 

Assuming section-wise constant   and   , Eq.(1) 

is solved by the transfer function [11] 
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with 

2( ) .          (14) 

It is well known that the imaginary part of the relative 

complex frequencies are the damping constants and the real 

part are the oscillation frequencies of the modes relative to the 

reference frequency. The threshold of a mode is reached, if for 

a certain gain (the threshold gain) in an active section the 

imagery part of the complex frequency (the damping constant) 

vanishes.  

The wavelengths of the modes relative to the reference 

wavelength are given by 

0

Re( ).
d

d 





     (15) 

For a Fabry-Perot laser ( 0   ) the system (1) can be 

analytically solved to obtain the relative complex frequencies 
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where 1,2,3,...m   is the longitudinal mode index and M  is 

the (odd) number of modes taken into account. These 

frequencies are the starting values of an embedding procedure 

where   and the reflection coefficients are stepwise changed 

to the original values. 

III. SIMULATIONS 

We consider an external cavity diode laser which operates 

at the wavelength 0 0.78 μm  (for more details see [12]). 

The reflection coefficient at the border between active region 

and air gap is Rd=0.01 and between air gap and holographic 

volume Bragg grating is zero. The respective transmission 

coefficients are Td = 0.8 and one. The active section length is 

L1=1 mm, the air gap length L2 = 30 mm, and the holographic 

volume Bragg grating length L3 = 6 mm. Figure 2 shows a 

spectrum of the intensity reflection of the Bragg grating for 
11.9 cm   . The maximal field intensity reflection is 0.65.  

 

Fig. 2. Calculated reflectivity spectrum of the Bragg grating. 

It is well known that to achieve a controlled stable 

generation of a single mode, we have to increase its gain 

margin with respect to the other modes, which in particular 

can be done by suitable design of the Bragg grating.  

We begin our analysis for the given above parameters of 

the laser setup. Figure 3 shows the results of the numerical 

simulation for the relative threshold lasing frequency (top) and 

imaginary part of the frequency (bottom) as a function of the 

injected current. The decrease of the frequency with 

increasing current is caused by the increase of the effective 

index due to self-heating according to  
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If the detuning between the frequency of the mode and the 

constant Bragg frequency is too large, the lasing mode jumps 

back to a longitudinal mode having a higher frequency. As 

mentioned above Figure 3 (bottom) shows the imaginary part 

of the frequency as a function of the injected current. From 

this figure it is possible to find for a given current the 

dominant mode characterized by a vanishing imaginary part of 

the frequency. 

 
Fig. 3. The relative threshold lasing frequency as a function of the injected 

current (top) and imaginary part of frequency as a function of the injected 

current (bottom). 

 

 
Fig. 4. The relative threshold lasing frequency as a function of the injected 

current for different values of the amplitudes reflectivity Rd at the border 
between active region and airgap a) Rd=0.001, b) Rd = 0.01, c) Rd = 0.05 and 

d) Rd = 0.1. Thick lines represent the main dominant optical mode. Thin lines 

show the all CW states for the maximal field intensity reflection 0.7. Other 
parameters are as follows: Td=0.8, L1=1 mm, L2 =30 mm, L3 = 6 mm. 

In what follows, we vary the transmission and reflection 

coefficients. Figure 4 shows the case when we change the 

reflection coefficient Rd keeping constant the value 0.8 of the 

transmission coefficient. Let consider the lower value of the 

reflection coefficient Rd =0.001. Figure 4a shows that only 

two modes are involved in the jumps. On the other hand, when 
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we increase the reflection coefficient, as shown in Fig. 4(c-d), 

the laser behavior become more complex and more modes are 

involved in the lasing. 

Now we consider what is predicted to happen if we change 

the length of the air gap keeping constant the transmission 

coefficient (Td =0.8), the reflectivity (Rd = 0.01), the length of 

the active section (L1=1 mm), and the length of Bragg grating 

section (L3 = 6 mm). When we increase the length of air gap 

section more external cavity modes are involved in the jumps 

(see Fig. 5). On the other hand, it is well known the short 

length of air gap section reduces the number of modes 

involved in the jumps and laser will operate in the single mode 

regime.  

 Another important laser characteristic is the longitudinal 

power profile shown in Figure 6. Letters 'A', 'B' and 'C' 

represent different modes from Figure 3. The total value of the 

power consists of a forward and a backward travelling 

component. 

 

 
Fig. 5. The relative threshold lasing frequency as a function of the injected 

current for different values of the length of airgap: a) L2 = 15 mm, b) L2 = 30 
mm, and c) L2 = 45 mm. Thin lines show the all CW states for the maximal 

field intensity reflection 0.7. Other parameters are as follows: Rd=0.01, Td=0.8 

The first small region defines the active section of the laser 

where the forward and a backward travelling components are 

being amplified. The second section of the laser (air gap) is 

characterized by a linear transmission without changing power. 

The third region is the Bragg grating where the power varies 

exponentially. Fig. 6(A) shows the power profiles in the laser 

close to the jump point to another mode with a higher 

frequency. Fig 6(B) shows the power profiles when the mode 

just made the jump. Therefore, the total power in the air gap is 

greater than the previous Fig. 6 (A). Figure 6(C) shows the 

power profiles when mode makes an extra jump. In this case 

the total power will be less than in cases represented on the 

Fig. 6(A) and Fig. 6(B), because the mode originates from a 

former chip mode. 

 

 
Fig. 6. The relative power P as function of the position z. Solid line is a total 

relative power, dotted line is the forward component, and dashed line is the 

backward component. 

CONCLUSIONS 

We studied a three section diode laser using a calculation 

based on the solution of the homogeneous coupled-wave 

equations with a transfer function approach. The lasing 

wavelengths as function of the increased injected current and 

the relative power P as function of the position z were 

obtained. It was showed that the number of lasing modes is 

closely dependent on the air gap length, transmission and 

reflection coefficients at the interface sections. Thus, reduction 

of transmission coefficient and increase of the reflection 

coefficient leads to the formation of the secondary cavity, and 

vice versa, increase of the transmission coefficient and 

decrease of the reflection coefficient leads to the stable single-

mode lasing. There is a similar dependence of the number of 

modes involved in the jumps on the length of the air gap 

section. If we increase the length of the air gap section more 

modes are involved in the jumps of modes. And inversely, if 

we decrease the length of air gap section only two modes are 

involved in the jumps. 
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