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Abstract: The non - equilibrium theory of strongly correlated systems is proposed theory which is 

grounded on the generalized Wick theorem. This theorem is employed for calculation of the thermal averages 
of the contour arranged products of electron operators by generalizing Keldysh formalism. Perturbation 
expansion is realized for Anderson impurity model in which we consider the Coulomb interaction of the 
impurity electrons as a main parameter of the model and the mixing interaction between impurity and 
conduction electrons as a perturbation. The first two approximations are used for obtained the value of the 
current between one of the leads and central region of interacting electrons. The contribution of the strong 
correlations and of irreducible diagrams is analyzed. 
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We develop a new diagram technique for investigating the non - equilibrium state of strongly 

correlated electrons systems. 
We construct the perturbation theory for Anderson impurity model with the strong electronic 

correlations of d  electrons of the impurity ion taken into account. This theory is based on the Generalized 
Wick Theorem (GWT) which permits to calculate the thermodynamic averages of the product of contour 
arranged  of electron operators by generalizing the Keldysh diagram technique [1]. The main parameter of 
theory is considered the Coulomb interaction between impurity electrons and as a perturbation the mixing 
interaction between impurity and conduction electrons. 

We start with single Anderson impurity model connected to two leads named left (L) and right (R) 
with Hamiltonian 
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where d  and 

k
C

  annihilation operators of the dot and leads electrons correspondingly, with spin  , 
k
  

is leads electron energy eigenvalues and d is dot’s electron on-site energy, U  is the Coulomb repulsion,  

k
V

  

is the mixing matrix elements which describe the coupling between dot and leads, n d d  
 . 

We shall use the operators b  of the localized mode of leads conduction electrons 
k k

k

b V C    

and investigate the influence of the localized electrons of impurity on this collective mode of 
conduction electrons. 

The chemical potentials of both leads are supposed to be different and the system is in non-equilibrium 
state. Therefore we employ the Keldysh formalism [1-2] based on the contour (Fig. 1). 

 
Fig.1. The Keldysh contour of the time evolution. 

of the time evolution and the systems of four Green’s functions for the both subsystem of localized and 
free electrons with operator ,d d 

  and ,
k k

C C 
 correspondingly.  

 We use the time-ordering and anti-time ordering of the Heisenberg operators. For leads conduction 
electrons we use the localized mode and investigate the influence of the localized electrons of this collective 
mode 

k k
k

b V C   on conduction electrons. The system of four Green’s function of  the lead’s  electrons  

has, in the notification of [2], the form  
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Here T  and T  denote the time and anti-time ordering. The analogous definitions exist for the Green’s 
function of he localized electrons marked in as G


  and so on. 

 In Keldysh formalism we use the matrix Green’s functions composed from different elements of the 
evolution in contour space. We have the matrices 
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and also such one for the full propagator G . Here   is correlation function and 0g is bare propagator 
of free itinerant electrons. 

Dyson-type equation for non-equilibrium strong correlated electron systems has the form 

0
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We formulated the non-equilibrium perturbation theory supposing that the time evolution is realized 
along the real-time contour, which starts and ends at t   . 

 The thermal average at 0t   can be obtained in the form 
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where operators with tilde iH  are in interaction representation. 

In the next we shall use two forms of operator A  
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and determine the Green’s functions 
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The expansion of the exponents in the  Eq.(1 ) is the realization of the perturbation  theory. 
In the Fig.2  is presented the two contributions of  the values  (1)

1A  and (1)
2A in the first order of 

perturbation theory 

 
Fig. 2. Diagrams of the first order of perturbation theory. a) for  (1)

1A and b) for (1)
2A .  

Thin solid line is G  propagator and dashed line is g propagator. 
The analytical expressions for these quantities  is  the following 
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New elements of diagrammatic theory of our strongly correlated systems are the irreducible Green’s 
functions or Kubo cumulants, which appear in the high order of perturbation theory. 
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