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INTRODUCTION 
 

One of the oldest ideas for the calculation of the 
eigenvalues and eigenvectors of the dense, symmetric 

matrices is Jacobi’s algorithm introduced in 1845. 

The procedure (computation method) focused 
specialists’attention as the parallel calculation 

thechniques were developing. 

  The paper presents Jacobi’s rotation method 

and the corresponding program within the 
programming MATLAB medium for  approximate 

calculation of eigenvalues and eigenvectors of the 

symmetric matrices. 
 

 

1. JACOBI’S ROTATION METHOD 
 

Let A be a square symmetric matrix of order n; 
then its eigenvalues are real and there exists an, 

orthonormal basis made of the eigenvectors  vi , 

i 1,n in which the equations i i iAv v , i 1,n,   

hold and the matrix gets the diagonal form 
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         The   basis can  be  chosen so  as  to  lead  to 

1 2 3 n... .           

          If, moreover, matrix  A  is definitely positive, 

then 1 2 3 n...       > 0  and 

 

        λ1 = ||A||2 = 
x 0

Ax, x
sup .

x, x

  

 

        Lets  P  be the transformation matrix from the 

standard basis of the space Rn to the basis (v1,v2,…vn). 

Once can easily see that  PT P = I; hence  

 P is orthogonal. If follows that  P-1 = PT  and that 
 D = PT A P . 

             In practice, the eigenvalues of matrix A 

cannot be actually identified by numerically solving 

the characteristic equation  det (A -  I) = 0, because 

the roots of this polynomial are very “sensitive” to 
any modification in the coefficients of the 

polynomial. 

             The recommended method is to bring, by any 

possible means, the matrix to a diagonal form and 
then the eigenvalues can be wholly identified, since 

they are the elements on the main diagonal of  D. 

              Thus we aim , through similarity changes 
that do not  modify  the  eigenvalues, to diminish, 

possibly up to the total vanishing,  the non-diagonal  

elements of the matrix; thus we could eventually 

obtain the diagonal matrix. 
             Jacobi’s  method consists  in performing a 

series of similarity transformations on the A matrix by 

using the simplest nontrivial orthogonal matrices 
(rotation matrices ) of the form  

                 p           q 
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                     (2) 

 
           The elements of matrix U are given by 
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ii

pp pq

qp qq

ij

u 1 if i p and i q

u cos , u sin
.

u sin , u cos

u 0 as remainder

 

 

  


 


  
 

                         (3)  

       The matrix U is orthogonal  ( UT U = I so U-

1=UT) and, from a geometrical viewpoint, it represents 
a rotation  of angle  φ in the plane  identified  by the  

ep and eq  directions. 

            We denote A’ = UT A and A’’ = A’ U = 

UTAU. In general, the elements of matrix  A’ are 

 
'

ij ij

'

pj pj qj

'

qj pj qj

a a if i p and j q

a a .cos a .sin .

a a .sin a .cos

 

 

   




 


  


                           (4) 

 
 and the ones of matrix A’’ are  

 
'' '

ij ij

'' ' '

ip ip iq

'' ' '

iq ip qj

a a if i p and j q

a a .cos a .sin .

a a .sin a .cos
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 

   




 


  


                          (5) 

 

 If follows from  (4) and  (5) that 
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pp pp pq qq
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qq pp pq qq
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pq pp qq pq

'' ''

qp pq

a a cos 2a cos sin a sin

a a sin 2a cos sin a cos
.

a ( a a )sin cos a cos 2

a a

   

   

  

   
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   
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



 (6) 

 

      We aim that largest (in absolute value) non-
diagonal element, the should vanish, as a result of the 

rotation; we will choose the rows p and, so that apq  

will be the largest element (in absolute value) above 
the main diagonal and we shall state the condition that 

a’’
pq =  0. 

           Taking into account (6) it follows that 
 

1

2
(apq – aqq)sin 2φ + apq cos 2 φ = 0 

 

and therefore 

 

tg 2 φ = 
pq

qq pp

2a
.

a a
                                            (7) 

 

         Hence, the angle of rotation is identified from  
(7). We will introduce the notations: 

 

θ = 
qq pp

pq

a a

2a


 and tg φ = t                                   (8) 

         Since tg2φ = 



21

2

tg

tg


 , it results from (7) and 

(8) that  t2 + 2θt – 1 = 0. 

 
By solving this equation we get 

 

t1,2 = - θ 2

2

1
1 .
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 
  

 
 

  

      In order to avoid the case when, the 
denominator becomes very small we consider 

 

t = 2

1
if 0

.sgn( ) 1

1 if 0
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
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                  (9) 

     
           According to some elementary trigonometric 

formulas, we have: 
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                                       (10) 

 
         From  (9) and (10) it follows that  |t| 1,  

 

c
1

2
 , |s|

1

2
  and thus , .
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 
 

 

         If we denote S(C)  the sum of the squares of the 

non-diagonal elements of any matrix C then , from (4)  
and (5), a direct calculation would lead us to: 
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S(A’’) = S(A) – 2 2''2 2 pqpq aa  .      

 

           Therefore, if we choose the angle of rotation φ 
according to (9) and (10), it results that 

  a’’
pq = 0 and thus 

 
  S(A’’) = S(A) – 2 a2

pq                                      (11) 

 

Since a2
ij  ≤ a2

pq for i ≠ j, we get 
 

S(A) ≤ n(n-1) a2
pq  or                                         (12)       

                                 

)1(

2





nn
S(A) ≥ -2a2

pq 

 

         We thus get, from (11) and (12), 

 

S(A’’) ≤ S(A)(1 - 
2

n( n 1 )
) for n ≥ 2              (13)  

 

          Let us now consider a long series of rotations 
leading to the matrices A0, A1, A2, …,Ak  where 

A0=A, A1=A’’, A2= A1
’’ , etc 

         It follows from (13) that 

 

S(Ak) ≤ 

k
2

1
n( n 1 )

 
 

 
S(A)                       (14) 

        But  1- 
2

n( n 1 )



 (0,1) for n >2,  hence 

according to (14), 

 

k

lim S(Ak) = 0 

         Thus, at the limit, the sequence {Ak} tends 

tothe diagonal matrix. We can prove the theorem 

that follows. The matrix P is the result of product  

matrices U1, U2,…, Uk. 

 

Theorem [3] 

   Let us consider the eigenvalues λj of matrix A 

and let ajj
(k) be the diagonal elements of the matrix 

Ak. Then: 

 

    ( k )

jj j ka S( A ).   

 

          Since  apq
(k)  is the largest  ( in absolute value ) 

non-diagonal element of the Ak matrix, the 

following evaluation results: 

 

  
2

2 ( k ) 2 2 ( k )

k pq pqS( A ) ( n n ) ( a ) n a .    

 

           From this theorem we obtain : 

 
( k ) ( k )

jj j pqa n a .                                   (15) 

 

           The inequality  (15) can be considered as a 

criterion for stopping the algorithm. 

           From inequality 
( k )

pqn a eps. , we will get 

the number  k of the necessary rotations , to 

approximate  the eigenvalues λj of the matrix A, with 
the diagonal elements aii

(k) of matrix Ak.  

           The sequence of matrices Ak and  P  the 

transformation matrix, are recursively calculated 

by  

 

 
T

k k k 1 k

0

A U A U , k 1
.

A A


  




                      (16) 

  

P : = UkP ,         k ≥ 1                           (17) 

 
            The columns of the matrix P are the 

eigenvectors of matrix A. 

 
 

2. THE  COMPUTER PROGRAM 

 
         Algorithm for the identification of eigenvalues 

through Jacobi’s rotation procedure 

   Introduce A, eps; 
   Repeat 

Determine: max:  = the higest element in absolute 

value, above the main diagonal of matrix A; 
(p,q): the position of this element; 

 

Calculate A:= UT *A*U; 
 

Calculate P: = U * P; 
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Calculate s:=

1

2
n n

2

ij

i 1 j 1
i j

a
 



 
 
 
 
 

 until   s < eps. 

% Jacobi method for calculate eigenvalues and 

eigenvectors. 
%  We introduce A, s, n, eps, max1. 

m = 0; 

P = eye (size(A)); 

while s > eps 
for r = 1: n-1 

for k = r+1 : n 

if max1 < abs(A(r,k)) 
   max1 = abs(A(r,k)); 

    p = r; 

    q = k; 
     end 

    end 

 end 

if A(p, q) = = 0 
disp (‘STOP’) 

break 

   end 
teta = (A(q,q) – A(p, p))/ 2 * A(p,q); 

if teta = = 0 

   t = 1; 
   else 

t = 1/ (teta + sign(teta)*(teta^2 +1)^(1/2)); 

end 

c = 1 / (t^2+1)^(1/2); 
s =  t / (t^2+1)^(1/2); 

I = eye(size(A)); 

I(p,p) = c; 
I(q,q) = c; 

I(p,q) = s; 

I(q,p) = -s; 

disp ( ‘the matrix U’ ) 
disp ( I ) 

P = P * I ; 

disp ( ‘the matrix P’ ) 
disp ( P ) 

A = I’ * A * I; 

disp (‘ the matrix A ‘) 
disp ( A ) 

s = 0 ; 

for r = 1 : n 

for k = 1 :n 
   if  r~ =k 

   s = s + A(r,k)^2 ; 

   end 
  end 

  end 

 s = s^ (1/2) 

 m =  m +1; 
disp (‘ number iteration ‘) 

disp (m) 

  max1 = 0 ; 
     end 

%  The significance of the variables 

%  A symmetric square matrix 
%  n – the order of matrix A 

%  max1 – contains the highest a(p,q) in absolute 

%  value 

%  eps – increased for s 
%  P – the transformation matrix ; at the end, its 

%  columns contain the eigenvectors of matrix A 

%  At the end , on the main   diagonal of the matrix, 
%one can read the eigenvalues of matrix A. 
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