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INTRODUCTION 
 

 Further, we will present  the Poisson 

equations with mixed conditions on frontier 

solution, using a method of finite element. 
 

 

1. THE PROBLEM 
 

Let be D  R2 a bordered domain, having the 

regular frontier S  and an operator A of Laplace 
type with next expression: 

 KA ,                (1) 

where K = (kij (x, y)), I, j=1, 2 is a symmetrical 
matrix of continuous functions on D, express of 

physical anisotropy of the domain D on which we 

study the described phenomena by Poisson 
equations (3). 

We will noted with DA the whole set of the 

functions definite on D  that satisfy the following 

conditions: 

functionscontinuous
y

u

x

u
u








,,  

portionsonfunctionscontinuous
y

u

yx

u

x

u
2

22

2

2

,,










  

They satisfy a mixed condition on the 

frontier S with this expression: 

 0)()(*  shuspnuK              (2) 

where: 

n  is the normal unit vector toward the exterior 

frontier S; 

n  p(s), h(s) are continuous functions on S. 

Further, we will determine a function u0 AD , 

solution for the equation: 
Au = g ,                                              (3) 

where the function g named in engineering 

problems as “source function” is at least integrable 
on D. 

It is demonstrated that the operator A definite 

through (3) is symmetrical and positive definite and 

the solution of the equation (3) with the frontier 
condition (2) is equivalence on DA with the 

functional minimisation 
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For the function uo
AD  determination that 

accomplish minimum of (4) further we will use the 

known Riesz method. 
 

2. THE  DISCRETE  PROBLEM 
 

To the formulate problem is associated a 

discrete problem. We will build a minifying 
sequence of functions w1, w2, … with imposed 

form, minimise sequence for the functional (4), that 

is: 

,lim 0 EEM
M
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where 
E

  is the energetic norm. 

The idea of finite element method consists in the 
domain decomposing into disjoint subsets reunion 

Ti (named elements) satisfying the conditions: 
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Corresponding to this divisions the functional F(u) 

will be: 
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(6) 

where: Fi(u) express the energy on the element Ti. 

To every element Tm of the division T1, T2,…,TM 
will be associated a number of characteristically 

points Pm named nodal points, obtaining N nodes on 

the whole domain. We will associate to every 

interior node “i” of (xi, yi) co-ordinates, a function 
fi(x,y) with the following proprieties: 
 

   a. fi continuous on D , i=1,2,…,N, 

b. fi(xi, yi) = ,ij
                              (7) 
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c.  <fi, fj> = 0, for ,ji                                     
,,1. Mid   the function fi satisfies the 

condition (2) on S. 
 

Let be EN the subspace of DA, generated by the 

function f1, f2, …, fN. 

A certain function wN NE  will have the next 

form: 

wN = 


N

i

ii fc
1                                                  (8) 

The function u(x, y) 
AD  will be 

approximated on every Ti element with a 

continuous on D function w(x,y) with continuous on 
portions partial derivatives of first order.  

For a certain element Tm of the proposed division, 

the approximation function can be writhe as: 
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Where 
i

mf is the function f1, f2, …fN 

restriction to Tm element which contains the node 

“i” and 
imw is the w(x, y) function value in the node 

“i” and have part of variations parameter . 
We will insert the matric notations: 
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(10) 
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the relation (9) became: 

 

 mmm wfyxw ),(
                            

(12) 

At every element Tm it is associated an 
matrix Lm with Pm lines and N columns, which put 

into biunique correspondence the Tm element nodes 

and obtained nodes on D through performing the 
divisions in the elements T1, …, TM.

     
Making the notations: 

 

  N

T WWWW ,...,, 21                      (13) 

     

and using the matrix Lm we will obtain the link 

between the relations (12) and (13): 

 

       Wm=LmW,                                      (14) 

 

and (7) became: 

 wm(x,y) = 
T

m

T

m

T FLW
          (15) 

By means of formula (15) we obtained a 

interpolation on Tm for the function from DA. 

If in (6) the function u is replaced with wm it is 

obtained: 
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where: 
gm, hm, pm are the functions g, h, p restrictions at the 

elements Tm on the frontier Sm. 

Taking into consideration (15) the expresion of 

),( yxWm is: 

,),( mmmm WLByxW   

where: 
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The similar expressions with (12) can be 

obtain also for the functions g, h, p: 
g (x,y) = Fm gm, 

h (x,y) = Fm hm, 

p (x,y) = Fm pm, 
where : 

gm, hm, pm  are vectors that contain functions values 

g, h, p in the element Tm nodes. 
 

The expresion of the functional (16) became: 
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where we made the notations: 
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The function (17) minimisation relative 

with W1, W2,…,WN leads at the linear system 

solution: 
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which can be also write as: 

GW=Hg – Hh + Hp,                                 (19) 
where we noted with: 
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The system (19) unknowns are: functions 

values u0 that minimises the energy functional and 

so, the problem (3) solution in net nodes formed 
through the domain D division into finite elements. 

This system solutions is quite comfortable 

because in case of the definite and symmetrical 
positive operators, the system (19) matrix is 

symmetrical having moreover an band structure that 

means an substantial advantage in numerical 
solution of system (19) by computer way. 
 

3. THE COMPUTER  PROGRAM 
 

The computer program in C++ language solves 

an undetermined compatible system of n linear 

equations with n unknowns. For round-off errors 
reduction which are made by computer, before 

system  and subsystems processing it is replace the 

equation that must to contain the one equation pivot 
from subsystem so that the obtained pivot to have 

the maximum absolute value. 

The terms of problem are the system dimension, 
the coefficients and the free terms. 

#include <stdio.h>  

#include <conio.h> 

#include <math.h>  
int n, i, j, k, p, t; 

double a [10] [11], x[10], max, s; 

void main (void) 
{cout << “Dimensiunea sistemului n=”; 

cin >> n ; 

cout << “Introduceţi coeficienţii : “ <<endl ; 

for (i=1 ; i<=n ; i++) 

{cout  << ” b ( “ << i <<”) = ” ; 

cin >> a[i] [n+1] ; } 

k=1; 
t=0; 

do 

{max = fabs (a [k] [k]); 
p = k ; 

for ( i = k+1 ; i < = n ; i + + ) 

if (max < fabs (a [i] [k])) 

{ max = fabs (a [i] [k]); 
p = i ; } 

if (max = = 0) 

t = 1; 
else 

{ if (p|=k) 

for (j = k;  j< n+1; j + + ) 
{ s = a [i] [k] ; 

a [i] [k] = a [p] [j]; 

a [p] [j] = s; } 

for ( i = k+1 ; i<= n; i + + ) 
for ( j = k+1 ; j<= n+1;  j + + ) 

a [i] [j] - = a [i] [k] * a [k] [j] / a [k] [k]; 

k + + ;  }} 
while (( k < n) & & (t = = 0 ) ) 

cout << “Sistemul nu este compatibil determinat ! ″ 

<< endl ; 
else 

{ for (i = n ; i>0 ; i - - ) 

{ s = 0; 

for ( j = i+1 ;  j<=n; j + + ) 
s + = a [i] [j] * x[j]; 

x[i] = (a [i] [n+1] –s / a[i] [i]; } 

cout << “Soluţia sistemului:” << endl; 
for ( i = 1 ; i<= n ; i + +) 

cout << “x ( “ << i << “ ) = “ << x[i] << endl;} 

getch ( ) ; } 
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