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Abstract: Today’s version of the Solovay-Strassen test appears more complicated than the

Miller-Rabin test mostly because of the need to compute the Jacobi symbol. This computation is

required because the Solovay-Strassen test uses random numbers, which may possibly not be prime,

as bases for the testing.  However,  choosing only prime numbers allows us to avoid the harder

implementation of the Jacobi symbol and use instead the Legendre symbol. The calculation of the

Legendre symbol can be performed by a  simple procedure that computes the residue when a tested

number is divided by a base.  
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The question of the relative accuracy of the Solovay-Strassen and Miller-Rabin tests is not

only in the sense of the relative correctness of each test on a fixed candidate, but also in the sense

than given candidate, the specified containments hold for each randomly chosen base. Thus, from a

correctness point of view, the Miller-Rabin test is never worse than the Solovay-Strassen test. There

are,  however,  some  composite  integers  for  which  Solovay-Strassen  and  Miller-Rabin  test  are

equally good. 

We propose in this article a modernization of the Solovay-Strassen test can give results that

are not only never worse but even sometimes better than Miller-Rabin’s ones. 

Before offering our suggestions let’s compare and see some relationships between the two

tests and present some differences between them with regard to three considerations: computational

cost, implementation and operating speed. 

The Solovay-Strassen  test  appear  both  computationally  and conceptually  more complex.

While  the  Miller-Rabin  test  requires  the  equivalent  of  computing
 

na
n

mod2

1
,  the  Solovay-

Strassen test  also  possibly  requires  a  further  Jacobi  symbol  computation,  which  is  a  complex

procedure. 

The mathematical justification of the proposed modernized algorithm is based on the law of

quadratic reciprocity:
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The classical version of the Solovay-Strassen algorithm can be expressed as follows:
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The Jacobi symbol 

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used in expression (2) is a generalization of the Legendre symbol,

where  a  is required to be a prime number. Hence, taking as bases just prime numbers makes it

possible to switch from complex Jacobi number computations to Legendre symbol computations

and thus the law of quadratic residue can be applied. 

Taking this into account, equation (2) can be transformed to:
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In equation (3) the reversed symbol  
a

n
 corresponds to a simple computational procedure,

which  replaces  the  previously  used  computationally  complex  procedure  of  Jacobi  symbol

computation and erases the advantage of Miller-Rabin test at this point.

Furthermore, the assumed higher speed of the Miller-Rabin in comparison with Solovay-

Strassen test is only partially true. This holds for numbers of the form 14  kn . However, for

numbers  of  the  form  14  kn  the  Solovay-Strassen  test  has  even  an  advantage,  which  was

experimentally shown (using about a thousands experiments) with prime numbers forming initial

row as bases.

The modernized Solovay-Strassen test gives results with one iteration, when the base 3a ,

with the exception of strong pseudoprimes. 

The  conception  “critical  number  of  iteration”  first  appears  in  the  proposed  modernized

algorithm and it means that for each number group there is a proper strong pseudoprime with own

critical (control) value cra  for proving the complexity of the given strong pseudoprime.

For example,  strong pseudoprime  6533731  5cra  is  proper strong pseudoprime for

number group with less then 7 digits;   700132625 cra  for number group with less then 8

digits. 

This  row  can  be  expanded  ‘till  56th-digits  number,  because  the  largest  known  strong

pseudoprime is 62017133587698079071219227921940128769758627126261592193 .

Searching  for  new  strong  pseudoprimes  is  undoubtedly  a  time-taking  process,  but  for

practical use we don’t have to know their precise values. The only important thing is the value cra

for a given length number. 
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One can easily notice the dependence cra  from number length, observing the cra ’s changes

from previous category to next one. Thus, the empiric dependence between number of iteration k

(the number of prime in the prime row) and length of strong pseudoprime  n  has the following

form:

nk lg5.0   (4)

For example, 10 iterations should be done to test number of the order 2010 , who’s 37cra .

Boundaries  are  not  crossed,  because  for  the  nearest  24th-digits  strong  pseudoprime

356729393756374273439182 37cra , i.e. we still remain within the given range.

For  practical  needs  in  cryptography,  for  example  for  efficient  generation  of  public  key

parameters, there is a need to compute primes p and q  for an RSA modulus pqn  . In this case,

the prime must be of sufficient  size,  and be “random” in the sense that  the probability  of any

particular prime being selected must be sufficiently small to preclude an adversary from gaining the

advantage  through optimizing  a  search  strategy based on such probability.   Both  classical  and

modernized  tests  have  sufficient  accuracy  in  identification  of  composite  number,  because  the

distribution of strong pseudoprime is very scarce (in the range ‘till 91025  there are only 5 strong

pseudoprimes) and so the chance to “face” the strong pseudoprime has sufficiently small probability

for applying in generation of large prime numbers. 
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