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I. INTRODUCTION 

The creation of a knowledge framework aims at syste-

matic discovery and study of examples, which leads us to 

the central repository of digital data. With the tools in the 

framework we provide automated testing and comparisons 

of the abilities of computer algebra systems. 

At present, despite the constantly growing need, there is 

no canonical set of examples, used for benchmarking the 

non-commutative Gröbner bases. 

For ideals in commutative algebras, there are several col-

lections of examples, but, to the best of our knowledge, 

there exists only one framework, implemented in the SYM-

BOLICDATA project [17]. 

The necessity of such collection is obvious. For example, 

it took more than 10 years to apply the theory of general 

non-commutative Gröbner bases to differential and differ-

ence equations, although such possibility was evident to the 

developers of this theory. Meanwhile the absence of freely 

available certified and truly organized information and the 

set of usage examples resulted in the simultaneous isolated 

efforts of software development instead of the use and re-

use of the functionality, already developed in the general 

non-commutative world.  

One of successful projects, demonstrating the systematic 

approach to the whole set of problems, is the OREMO-

DULES package
1
 for MAPLE, which consists of implemented 

algorithms and a nice collection of examples and solved 

problems in the realm of mathematical physics and systems 

and control theory. 

 

II. GRÖBNER BASIS AND ITS IMPORTANCE 

Suppose we have a commutative or non-commutative 

polynomial ring over a field of coefficients. A lot of ma-

thematical problems can be reduced to study of ideals in 

such rings. Correspondingly, study of these ideals has a lot 

of applications in many areas. 

 An ideal can be represented by a set of its generators. 

                                                           
1 http://www.math.rwth-aachen.de/OreModules 

This presentation is not unique and can not be used to solve 

many natural problems. For example, how to detect if two 

given set of generators represent the same ideal? 

Starting from a set of ideal generators, the process 

known as Buchberger’s algorithm can extend it to the 

Gröbner basis of this ideal [19]. (Further variations of the 

Buchberger’s algorithm and other algorithms are also 

known.) Then the reduced Gröbner basis can be found by 

deleting the polynomials that are combinations of other 

elements of the basis. 

The reduced Gröbner basis with its elements divided by 

corresponding leading coefficients is unique for an ideal. 

This solves the problem of equality of ideals as well as 

many others. 

Gröbner bases are applicable in many important mathe-

matical and physical problems that can be expressed 

through systems of polynomial equations. 

For example, the following very simple criteria are 

known: the system of polynomial equations is inconsistent 

if and only if its Gröbner basis contains a non-zero con-

stant; such a system has finite number of solutions if and 

only if its Gröbner basis contains polynomials whose lead-

ing monomials are powers of only one variable, for each 

variable. 

In mathematics, many problems in differential equations 

and finite differences, in different domains including but 

not restricted by graph coloring, integer programming, 

theorem proving, and cryptography can be solved using 

Gröbner basis. In applications, such domains as weather 

forecast or petroleum production (and many others) can be 

exampled. In physics, the non-commutative Gröbner basis 

is used as well as commutative in many problems and 

many domains, for example, in quantum and nuclear phys-

ics. 

Several applications of non-commutative Gröbner bases 

are, among others: 

 rewriting systems, algebra and ring theory [18], espe-

cially group algebras of finitely presented groups 

(Heyworth [13], Madlener and Reinert [16], etc.); 

 representation theory of algebras [8, 9]; 

 cryptanalysis and cryptography, as described by, e.g., 
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M. Kreuzer [1], S. Bulygin with T. Rai (“polly crack-

er” algorithms [5]), and others; 

 H

 control theory, see, e.g., W. Hellton et al. [11]; 

 identities between special functions (P. Paule, F. Chy-

zak [6] and others); 

 automatic theorem proving (B. Buchberger et al. [4]). 

The academic bibliography on Gröbner basis can be 

found in [20]. 

 

III. THE STRATEGY OF ELABORATION 

The knowledge framework development is planned in 

the following steps and directions: 

 study of present abilities of SYMBOLICDATA and com-

parison with the actual and future needs of an abstract 

framework; 

 covering the area of free algebras by extending of 

SYMBOLICDATA to the two-sided ideals in free non-

commutative algebras; there are here two separate 

parts, devoted to homogeneous and inhomogeneous 

examples; 

 filling the framework with examples (problems and 

canonical results for them); 

 adopt the experience to the finitely presented and 

graded algebras. 

The abstract knowledge framework consists of the fol-

lowing components: 

 database of examples; 

 conversion routines between the database format, 

based on XML, and corresponding formats of comput-

er algebra systems; 

 various tools for studying different aspects of compu-

tations (memory usage, criteria and strategies applied, 

reduced bases, etc.) 

 intuitive command line and Web interfaces to the da-

tabase and its tools. 

We started from the current version of SYMBOLICDATA 

project and began to extend it with a non-commutative 

subproject. SYMBOLICDATA does not provide us with the 

functionality we need, so we need to develop the missing 

tools for the framework. 

 

IV. COMPUTER ALGEBRA SYSTEMS 

Below we enlist computer algebra systems, which pro-

vide a user with a possibility to perform computations in 

free associative algebras and path algebras. The following 

list of such systems, to the best of our knowledge, is ex-

haustive. 

BERGMAN, by J. Backelin et al. [14], is a powerful and 

flexible tool to calculate Gröbner bases, Hilbert and Poin-

caré-Betti series, Anick resolutions, and Betti numbers in 

non-commutative algebras and in modules over them. Per 

default BERGMAN takes homogeneous polynomials as the 

input. However, one is able to compute Gröbner bases of 

non-homogeneous ideals using homogenization or so-

called rabbit strategy provided by BERGMAN. 

MAGMA, by J. Cannon, W. Bosma et al. [3] is, among 

other, a generalization of Buchberger's algorithm to one- 

and two-sided ideals of finitely presented K-algebras as 

well as a non-commutative generalization (due to Allan 

Steel) of the Faugère F4 algorithm. These developments 

are quite recent in MAGMA. There are basic ideal opera-

tions and very important vector enumeration tools imple-

mented. 

GBNP (also called GROBNER), by A. Cohen and D. 

Gijsbers [7], is a package for GAP 4 with the implementa-

tion of non-commutative Gröbner bases for free and path 

algebras, following the algorithmic approach of Mora. It is 

a recent development, gaining more and more functionality 

with every new release. 

SINGULAR:LETTERPLACE is the very recent develop-

ment by V. Levandovskyy and H. Schönemann, realized as 

kernel extension of computer algebra system SINGULAR. At 

present, SINGULAR:LETTERPLACE computes only with ho-

mogeneous input, but it uses a very different algorithm due 

to La Scala and Levandovskyy [15], which shows very 

impressive performance on the variety of hard examples. 

FELIX, by J. Apel and U. Klaus [2], provides generaliza-

tions of Buchberger's algorithm to free K-algebras, poly-

nomial rings and G-algebras. Also, syzygies computations 

and basic ideal operations are implemented. 

NCGB, by J. W. Helton et al. [12], is a package for MA-

THEMATICA, partially written in C. It is a part of the 

NCALGEBRA suite, which performs various operations (e.g. 

simplification and reduction modulo the Gröbner basis) of 

non-commutative expressions. 

OPAL, by B. Keller et al. [10], is the specialized standa-

lone system for Gröbner bases in free and path algebras. 

OPAL does not require the homogeneity of an input and is 

able to compute degree-bounded Gröbner basis. 

 

V. INFORMATIONAL SYSTEM ON NON-

COMMUTATIVE COMPUTER ALGEBRA 

The informational system we provide contains the data 

base of known (stable) non-commutative computer algebra 

systems with the complete description of their possibilities 

and restrictions.  

Web sites that collect information on Computer Algebra 

Systems (CASs) exist. Several examples are:  

 http://orms.mfo.de/ – Oberwolfach References on Ma-

thematical Software by Prof. Dr. Gert-Martin Greuel et 

al., the Mathematical Research Institute Oberwolfach;  

 http://www.risc.jku.at/Groebner-Bases-

Implementations – Gröbner Bases Implementations, 

Functionality Check and Comparison by Viktor Le-

vandovsky et al.);  

 http://www.fachgruppe-computeralgebra.de/ – a site in 

German that contains a page with a (short) list of 

CASs).  

We can also refer articles on CAS in general and on dif-

ferent CASs in Wikipedia.  

In our database we provide rather complete information 

on specific CASs. The following data will be included for 

each CAS in the base: general information; downloading 

and installation information; main applications; commuta-

tivity aspects; specific calculations; programming language 
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aspects; interface aspects; representation of main data 

structures; representation of main objects; operations; main 

procedures; orderings; processing aspects.  

All data are described in details. For example, the gener-

al information includes: name, acronyms; web-address and 

mirrors; list of developers; history (date of first version, 

previous names); mode of distribution (free or commer-

cial); the language in which the system was written; is the 

system standalone or it is a package for other system; is the 

system dependent of other commercial products (e.g., 

MAPLE); existence of a demo-version; current state (e.g., 

the system has a stable version and its development contin-

ues; the system has a stable supported version but is no 

more under development; the system is stable but not sup-

ported; only older versions exist, not working on the mod-

ern platforms, etc.).  

We shall mention that almost all fields contain two le-

vels of answers:  

 primary (e.g, yes/no/maybe/do not know);  

 detailed, which gives more details in case the answer is 

yes or maybe. 

The system is available at http://www.math.md/nccas/. 

 

VI. PRESENTATION OF EXAMPLES DATA 

The usual problem can be formulated as follows. Given a 

computable field K and a free associative algebra A = K<x1, 

…, xn>, one is interested in computing a two-sided Gröbner 

basis (possibly up to a fixed degree d) of an ideal I = <f1, 

…, fm> for fi  A with respect to a fixed monomial ordering 

on A. A computable field has a prime subfield k, which is 

either Q or Zp for a prime p. K is then either a simple alge-

braic extension of k, defined by a parameter q subject to a 

minimal polynomial or a transcendental extension of k by 

multiple parameters q1,…,qL. 

The input information can be presented in finite terms. 

For two-sided ideal, we need to provide the description of 

the underlying free algebra, the degree bound (0 if no 

bound is set), and a set of polynomials being the ideal ge-

nerators f1, …, fm. The description of the free algebra con-

sists of the description of underlying coefficient field, the 

set of polynomial variables x1, …, xn, and the ordering of 

monomials: left (right) (weighted-)degree (reverse-) lex-

icographic, or similar. Finally, the coefficient field is de-

scribed by the prime p, or parameters q or q1,…,qL, with the 

minimal polynomial (for q only): q
s
 + c1 q

(s-1)
 + ... + cs. 

All the polynomials are written in a notation, similar to 

LATEX. 

The output is just one entry containing the list of poly-

nomials forming the two-sided Gröbner basis: g1(x), ..., 

gT(x). The output polynomials are sorted by a monomial 

ordering starting with the lowest terms. For total weighted 

degree orderings, the output polynomials will be automati-

cally sorted by degree. 

For one-sided ideal, we need to extend the record 

slightly. Based on the record above, we can formulate the 

left Gröbner basis computation for a left ideal from a finite-

ly presented algebra as follows. An important assumption 

is that the left Gröbner basis is computed with respect to 

the same ordering as the two-sided Gröbner basis of the 

two-sided ideal of relations. Moreover, the latter Gröbner 

basis must be finite. Thus, a finitely presented algebra is 

described by a free algebra F = K<x1,…,xn> over a field K, 

an ordering < on F and a finite set of polynomials, which 

constitute a two-sided Gröbner basis of relations. Note, that 

in this case no degree truncation is allowed, that is in such 

a situation the degree bound must be 0. 

In addition to the two-sided description, we must provide 

the generators of the left ideal as a set of polynomials. 

We suppose that Gröbner bases of both two-sided ideal 

of relations and left ideal over the corresponding factor 

algebra are finite. 

Then it is known, that by computing a completely re-

duced Gröbner basis for a fixed ordering and normalizing 

its generators by dividing out leading coefficients, we get 

the unique Gröbner basis for a fixed ordering. Hence it 

makes sense to supply each problem with the fixed order-

ing with the answer, which is unique by the arguments be-

fore. This makes the check of correctness of computation 

an effective procedure. 

The validation check becomes much harder (or even im-

possible), if an ideal is given via inhomogeneous relations 

and no monomial ordering leads to a finite Gröbner basis. 

Introducing a degree bound in this case does not help much 

because of the absence of the graded structure. Hence, at 

the time being one can process only finite Gröbner basis for 

a general example. However, we are investigating various 

notions of truncated Gröbner basis for possibly overcoming 

this serious difficulty. 

It seems reasonable to store both input and output data in 

XML-like format. 

 

VII. EVALUATION PROCEDURE 

A usual “example evaluation” procedure can be sketched 

as follows 

1. Selection 

 select an example ExampleX by name, speci-

fy the options 

 select a computer algebra system System1 

 create an input file Input-X-1 for System1 

from the ExampleX 

 run System1 on Input-X-1 and obtain 

 the output Output-X-1 

 total running time Time-X-1 

 in the case of error, error code Error-X-1 

and its description ErrorDesc-X-1 

 other auxiliary information 

2. Validation (check of correctness) 

 extract the result from Output-X-1 

 convert the result in the database format 

 compare it with the precomputed result Re-

sultExampleX by using earlier defined system 

DefaultSystem 

 report success; otherwise, output differences. 

3. On successful validation: output total running time 

Time-X-1 
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VIII. FURTHER DEVELOPMENTS 

The testing subjects can be expanded from Gröbner 

bases for two-sided ideals to the following: 

 treating submodules of free modules including ideals; 

 left (right) Gröbner bases over factor algebras modulo 

two-sided ideals (see above); 

 graded Hilbert function and Poincare series for homo-

geneous input; 

 K-dimension of finite dimensional objects (both one- 

and two-sided); 

 syzygy modules, etc. 
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