
7th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, September 22-24, 2011

 252

I. INTRODUCTION

Over the past years, many organizations, both large and

small, have implemented resource planning systems or

enterprise systems. The motivation behind these

investments is to improve organizational efficiency,

effectiveness, and ultimately performance. Companies have

gathered immense amounts of data based on customer

profiles, transaction records, phone calls and business data

stored across multiple databases. The number of

information stored is increasing constantly at a “terrific

annual compound rate of 60%” [1]. The abundance of data

now available is a resource, but on their own, resources and

technologies are neither good nor bad; it depends on how

they are used [2].

 Organizations need the ability to measure and act on key

indicators and events in real time. The solutions that are

currently available range from predefined set exports to

very sophisticated and costly business intelligence

applications. The former solution may not offer the

required insights and understanding of the data and trends

and the latter may prove too sophisticated and expensive to

provide the necessary return on investment.

The solution described in this paper arose from a practical

problem when different organizations using one of our data

management systems required an ever growing number of

custom reports. The implementation of these individual

reports was adding a lot of development and management

overhead, which lead to the idea of building a dashboard

interface that would allow users to create their own

bespoke reports. This paper presents the design and

implementation details of a web based system that aims to

solve these challenges by offering customizable data

exploration and visual analysis of abstract relational

databases.

II. SYSTEM OVERVIEW

The software has been designed to support the interactive

exploration of multiple multidimensional relational

databases by extracting statistical information and

analysing and visualizing data and trends. One of the key

areas in data analysis focuses on presenting graphical

metaphors that allow people to discover data trends and

patterns. There are 5 steps to this data analysis:

Figure 1-Process f low steps

1. CREATE DATABASE ABSTRACTION MODEL

Relational databases organize data into tables that mostly

correspond to real life business entities. For example,

business entities such as products and transactions may

correspond to similar tables where each row contains

information about a product or a sale or another business

object or fact. Each column on that table will refer to a

property of the entity. For example a product will have

attributes like: name, description, price, quantity, etc.

The first step in the database exploration is to identify all

the relevant business objects that will be used in data

analysis such as entities (tables) and attributes (columns).

This is achieved by querying the database schema and

creating an abstraction model.

A system for query and graphical analysis of

abstract relational databases

Abstract — Many organisations, both large and small, understand the competitive advantage that comes

from leveraging the knowledge locked in their databases. The digital economy is largely driven by the

effectiveness of use of this information in achieving their objectives. This creates significant demand to

provide custom reporting features to be able to explore and analyse the data gathered or generated by

software systems. This paper presents a software solution that enables users to gain real-time access to their

data with fully customizable graphical and statistical analysis. The novel approach of this web based solution

is offering these powerful features on potentially any arbitrary database located in the cloud. Featuring an

intuitive ―drag and drop‖ interface the software aims to provide the ability to build complex queries and

translate them into insightful visual representations for users of various levels of technical expertise.

Index Terms —dashboard, data analysis, relational databases, SQL queries

Alina OBJELEAN

Coventry University, United Kingdom

alina.objelean@gmail.com

7th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, September 22-24, 2011

 253

SELECT TABLE_SCHEMA, TABLE_NAME,

COLUMN_NAME, DATA_TYPE FROM

INFORMATION_SCHEMA.columns

WHERE TABLE_NAME <> 'sysdiagrams'

AND TABLE_NAME IN

(SELECT TABLE_NAME

FROM INFORMATION_SCHEMA.TABLES

WHERE TABLE_TYPE = 'BASE TABLE')

ORDER BY TABLE_SCHEMA, TABLE_NAME,

COLUMN_NAME

A representation of this abstraction model is then stored in

the application‟s database and is used to build the queries

and create reports specified by the user. The following

figure shows the schema of the tables associated with the

storage of the queried database model.

Figure 2-Internal database schema

For each attribute stored in the DBAttribute table the

application will also store what type of data it represents in

one of the following formats: Numeric, Date/Time or Text.

 This abstraction gives a very simple representation of the

data. But to be able to create more complex reports we

need to know exactly how these entities are connected.

This is achieved by analysing the way tables are linked

between them through foreign keys. A foreign key is a field

in a relational table (the child) that matches the primary key

column of another table (the parent) and is used to cross-

reference tables.

Foreign keys are stored in the DBLink table which contains

information about how various tables are connected. This

information is crucial for building queries involving

multiple entities since a query can contain data from two or

more different entities only if those entities are connected.

In terms of the database structure, this means that we can

select data from different tables only if a foreign key exists

to allow joining the tables.

If the database schema is represented as an oriented graph

where tables are vertices and the edges linking the tables

are foreign keys, the problem becomes to find if there is a

path between any two given vertices.

Floyd–Warshall algorithm is a classic algorithm designed

to find the least-expensive paths between all vertices in a

graph [3]. The algorithm compares all possible paths

through the graph between each pair of vertices. It does so

by incrementally improving an estimate on the shortest

path between two vertices, until the estimate is optimal [3].

When this routine finishes the entries in all positions of the

weights matrix represent the lowest-cost traversal between

the row-vertex and column-vertex. The matrix also

contains intermediate nodes that give the shortest path

between any two entities. These results are then stored as

comma separated values in the database.

2. BUILD QUERY

The figure below represents the chart designer that builds

dimensions on the two axes:

Figure 3 Chart designer

Users generate graphs by visually specifying the following

elements:

 Attributes - each series is built around an

attribute. A chart contains one attribute for X Axis

and up to 4 series on Y axis

 Aggregate functions – defines how Y series

values are grouped by items on X axis

 Grouping – optional, allows to classify and

categorize items

 Filter, Order by, Limit – optional chart

parameters

Based on the visual specification above the chart

description is stored in an XML format. An example of an

XML-formatted query is presented below:

<?xml version="1.0" encoding="utf-8"?>
<Query id="1">
 <xAxis groupId="0"
 Entity="User"
 Attribute="Name"
 AttributeType="1"
 Operation=""
 FilterItems=""
 SeriesName="Caller.Name" />
 <yAxis Entity="CampaignCall"
 Attribute="TotalGrossPledged"

X Axis

Y Axis

Attributes

Options

Chart types

7th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, September 22-24, 2011

 254

 AttributeType="2"
 Operation="Sum"
 FilterOverall=""
 groupId="0:Response.Name:1"
 SeriesName="Sum of
TotalGrossPledged">
 <FilterItems type="1">
 <Filter Entity="Campaign"
 Attribute="Title"
 AttributeType="1"
 Operation=""
 FilterItems="1:[Campaign1]" />
 </FilterItems>
 </yAxis>
</Query>

The above XML file is used to interpret and build SQL

queries on the server side by a component called

QueryProcessor. Each query is run independently in a

separate thread that is monitored for performance purposes.

If a thread exceeds its maximum allowable time, the query

is terminated to avoid low responsiveness generated by

complex queries.

QueryProcessor does not determine the appearance of the

visualization, it only computes the data points based on the

specification. Results are then sent back to the client side

which is responsible for rendering the graph image using

the charting component available within client‟s

framework.

The following section describes a formal mechanism of

mapping the above XML file structure to an SQL query

used to retrieve the data.

The query generates a table configuration consisting of 2

separate expressions: one for the X axis and one for the Y

axis using the following SQL statement:

SELECT [EntityX].[AttributeX] AS x,

Operator([EntityY1].[AttributeY1]) as

y1

FROM [EntityX]

{JOIN [EntityY1]…}

WHERE {Filters…}

GROUP BY [EntityX].[AttributeX]

{HAVING [Overall filters]}

{ORDER BY [N] ASC/DESC}

The query will produce a result in the following format:

For date/time type attributes a nested SQL statement is

used to automatically group by required grouping type

(year, month, day, or hour)

SELECT dateadd([grouping], q.x, 0)

AS x, Operator (q.y1) as y1

FROM(

SELECT datediff([grouping], 0,

[EntityX].[AttributeX]) AS x,

[EntityY1].[AttributeY1] as y1

FROM [EntityX] {JOIN [EntityY1]…}

 WHERE {Filters})

) q

GROUP BY x

The inner select statement makes sure only the necessary

part of the date time value is selected. For example if items

are grouped by year, it will only select the year part of the

date, ignoring the rest. The outer select statement then

aggregates the results grouping them by x values.

If a query contains more than one Y series, the SQL query

is broken down into sub-queries very similar to the one

described above. The only difference in this case is that

three expression statements are used: one for x series

values, one for y series values and one to indicate the name

of the series. So the SQL sub -query will become:

SELECT [EntityX].[AttributeX] AS x,'y1'

AS col, Operator

([EntityY1].[AttributeY1]) as value

FROM [EntityX]

{JOIN [EntityY1]…}

WHERE {Filters…}

GROUP BY [EntityX].[AttributeX]

Each sub-query will produce a result in the following

format

Result-sets are then combined using UNION ALL operator.

Each SELECT statement within the UNION must have the

same number of columns. The columns must also have

similar data types and must be in the same order. This is

Figure 5-Result format for multiple series

X Y1

a1 b1
a2 b2
a3 b3
… …
an bn

Figure 6- Simple result format

X Col value

a1 Y1 b1
a2 Y1 b2
a3 Y1 b3
a4 Y1 b4
… … …
an Y1 bn

1. Build

query

2. Run

query

3. Group

data

Pivot
table

4. Filter

& Order

Get

groups

Group

items

SQL Server

Database

Figure 4-Query processor steps

7th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, September 22-24, 2011

 255

why a third column is required to identify the series the

values belong to.

This is how data will look after combining result sets:

X col value

a1 Y1 b1
a2 Y1 b2
… … …
an Y1 bn

an+1 Y2 c1
an+2 Y2 c2
… … …
am Y2 cm

at+1 Y3 d1
at+2 Y3 d2
… … …
at Y3 dm

au+1 Y4 e1
au+2 Y4 e2
… … …
au Y4 em

Figure 7-Combined result format for multiple series

To obtain the data in the required format we need to rotate

the „col‟ expression in the resulted table by turning the

unique values from that column into multiple columns in

the output.

Microsoft SQL Server provides a relational operator

PIVOT that rotates a table-valued expression by turning the

unique values from one column in the expression into

multiple columns in the output, and performs aggregations

where they are required on any remaining column values

that are wanted in the final output.

By pivoting the table in the previous figure the results are

obtained in the following format:

X Y1 Y2 Y3 Y4

a1 b1 c1 d1 e1
a2 b2 c2 d2 e2
a3 b3 c3 d3 e3
a4 b4 c4 d4 e4
… … … … …
an bn cn dn en

Figure 8-Multiple series f inal result format

3. PROCESS DATA

Based on the requirements specified in the XML file, the

data may be necessary to be grouped and filtered before

passing on to the client side.

a. GROUPING

There are 2 types of groupings available in the system:

A. Groups – each group consists of a number of

discrete elements. It is used to categorize data. For

example to place users into teams or products into

different categories.

B. Bands – a set of continuous intervals. It is used to

specify ranges. For example for date attributes -

grouping by months or years; for numeric

attributes it might be used to define age groups

(e.g. young = 0 – 29, mid = 30 – 50, senior over

50, etc.).

A group‟s definition is stored in the database in

DBAttributeData table. Since a group can have a virtually

unlimited number of parts, to minimize the amount of data

stored on the database we use an encoding convention to

store the group structure in the database as a string.

The convention uses the following format to store the

definition:

groupingType%groupingName%group1^item1^…^ite

mN!...!groupN^item1^…^itemN!

groupingType – can be groups or bands; must be followed

by „%‟ sign to mark the separation between the type and

the next element.

groupingName – this is the name of the classification as

defined by the user; must be followed by a „%‟ sign as a

separator.

group1..groupN – names of the groups as defined by the

user. Groups‟ definitions are separated by a „!‟ sign.

Item1…itemN – the actual items that make up the group

separated by a „^‟ sign.

A definition for bands follows almost the same pattern as

above except we don‟t need to store the individual items,

but it is enough to remember the lower limit of a group.

The upper limit will be defined by the next group‟s lower

limit. The „!‟ sign is used as a separator to store these data.

An example of a group definition:

E.g. we have 2 categories of products: beverages: coffee,

tea, soda; and bakery: croissants and cakes. Using the

above convention this grouping would be stored in the

following format:

groups%Product categories%Beverages^ coffee ^tea!

Bakery ^ croissants ^ cakes

An example of bands definition for age groups (young = 0

– 29, mid = 30 – 50, senior over 50) would be stored in the

following format:

bands%Age groups%young!0!mid!30!senior!50

This notation relies on the fact that groups are stored in

ascending order and as such they need to be ordered before

formatting the data.

The procedure will first identify groups‟ structure and then

place items into the groups they belong to:

7th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, September 22-24, 2011

 256

X Y1 Y2 Y3 Y4

a1 b1 c1 d1 e1

a2 b2 c2 d2 e2

a3 b3 c3 d3 e3

a4 b4 c4 d4 e4

… … … … …

an bn cn dn en

X Y1 Y2 Y3 Y4

group1 B1 C1 D1 E1

group2 B2 C2 D2 E2

group2 B3 C3 D3 E3

… … … … …

groupn Bn Cn Dn En

Figure 9-Grouping values

Similarly to grouping items on the X Axis described in the

above table, the application features the ability to group Y

series:

X Y1 Y2 Y3 Y4

a1 b1 c1 d1 e1

a2 b2 c2 d2 e2

a3 b3 c3 d3 e3

a4 b4 c4 d4 e4

… … … … …

an bn cn dn en

The resulted table will be in the following format:

X group1 group2 … groupN

a1 B1 C1 … E1

a2 B2 C2 … E2

a3 B3 C3 … E3

a4 … … … …

… Bn Cn … En

an B1 C1 … E1

Figure 10-Grouping series

To achieve this result the procedure of grouping the items

on X Axis is reused, but to apply it to the Y axis the table is

transposed before and after the procedure.

b. FILTERING AND SORTING

To apply filters and order data is user DataTable.Select()

method. The DataTable Select method accepts a filter and

sort argument to return an array of DataRow objects that

conform to the criteria in a FilterExpression and to the

specified sort order:

DataRow[] rows = t.Select(filter, order);

c. FORMATTING RESULTS

The results from the processing thread are formatted as an

XML document and sent back to the client side which is

then responsible of creating a visual representation based

on these results. An example of a XML result is displayed

below:

<Query id="44" Title="Title of the report"

ViewId="7">

 <QueryInfo>

 <x seriesName="Product name"></x>

 <y1 seriesName="Total Sales for category =

“Beverages"></y1>

 <y2 seriesName="Total Sales for category =

“Bakery"></y2>

 <y5 seriesName="Total Sales for category =

“Other category"></y5>

 </QueryInfo>

 <QueryData>

 <Item x="Product 1" y1="0" y2="0" y3="100"

y4="0" y5="0"></Item>

 <Item x="Product 3" y1="0" y2="0" y3="112"

y4="0" y5="0"></Item>

 <Item x="Product N" y1="0" y2="7"

y3="100" y4="7" y5="1"></Item>

 </QueryData>

</Query>

Query node contains the query id and report title attributes.

Query id is used to identify and map results to the object

making the request. The child nodes are split into two

sections. The first node “QueryInfo” contains information

about series; it is used to draw the chart‟s legend and

identify series by name. The second child “QueryData”

contains the actual data that are used to draw the points on

the chart.

III. RESULTS

We present the end results and the capabilities of the

software by considering its application in a system that

serves telephone fundraising campaigns and is currently

used by some of the most prestigious universities in the

UK. The implementation of the dashboard solution was

required to enable managers and users to access real-time

campaign statistics and see exactly how callers and pledges

were doing minute by minute with ability to create charts

and reports from any of the information contained within

the database [7][8].

The first step is to setup the connection details to the

database containing campaign data.

Figure 11-Data source manager

group

1

group

2

group1 group2

7th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, September 22-24, 2011

 257

Once the connection is established successfully, the

database structure is mapped to corresponding entities and

attributes.

Users can then do various adjustments to the model by

selecting only the entities and their corresponding attributes

required for analysis.

The next step is generating visual graphs using the chart

designer component displayed below. Using an intuitive

drag and drop interface, this module allows users to create

charts by setting the attributes along the two axes. It also

presents a rich set of features including the ability to group,

filter, sort, and specify the visual representation of the data

Figure 12-Building charts with chart designer

The final views constitute fully customizable sets of charts

enabling users to choose what data to see and how to

display it, featuring the ability to drill down, analyse views

and trends and export the data.

Figure 13-Graphical representation of the data

IV. CONCLUSIONS AND FUTURE WORK

This paper presented a solution for the analysis and

exploration of distributed multidimensional databases.

The first contribution of this system is a visual

specification for graphically describing the structure of a

relational database offering the ability to easily understand

and manipulate the entities which reports are based on.

The second contribution of this system is to dynamically

build and display relational query results using a rich,

expressive set of graphical views. The software features an

ample set of operations and filters that can be applied to the

data to support this exploratory process through its visual

interface. It offers the ability to view overall trends or

categorize data and drill-down into areas of interest. There

are many plans for future work including: addition of data

mining algorithms and techniques, development for various

database management systems and support for data stored

in different file formats such as: Excel, CVS, etc.

ACKNOWLEDGMENTS

I would like to thank my supervisor Dr Xiang Fei for his

support and reviews of this paper. I would also like to

thank my colleagues at Exasoft and Bit10 who have been

involved in the development and testing of this system and

especially our technical team leader Nick Barker.

REFERENCES

[1] The Economist A Special Report on Managing

Information: All Too Much | The Economist [online]

available from

<http://www.economist.com/specialreports/displaystor

y.cfm?story_id=15557421>

[2] Grigori, D., Casati, F., Castellanos, M., Dayal, U.,

Sayal, M., and Shan, M. (2004) 'Business Process

Intelligence'. Computers in Industry 53 (3), 321-343

[3] Wikipedia Floyd-Warshall algorithm [online] <

https://secure.wikimedia.org/wikipedia/en/wiki/Floyd-

Warshall_algorithm>

[4] Rosow, E. and Adam, J. (2004) 'Real-Time Executive

Dashboards and Virtual Instrumentation: Solutions for

Health Care Systems'. in Clinical Engineering

Handbook. ed. by Joseph F Dyro. Burlington:

Academic Press, 476-483

Loshin, D. (2003) 'The Value of Business Intelligence'.

In Business Intelligence. ed. by Anon San Francisco:

Morgan Kaufmann, 11-25

[5] Mohamed Z. Elbashir, Philip A. Collier, Michael J.

Davern (2008) „Measuring the effects of business

intelligence systems: The relationship between

business process and organizational performance‟,

International Journal of Accounting Information

Systems, Volume 9, Issue 3, Eighth International

Research Symposium on Accounting Information

Systems (IRSAIS), Pages 135-153, ISSN 1467-0895

[6] Unknown Big Data is Less about Size, and More about

Freedom [online] available from

<http://techcrunch.com/2010/03/16/big-data-

freedom/> [29/08/2011]

[7] Fundraising Fundamentals Dashboard | Exasoft PLC

[online] available from

<http://explc.com/products/fundraising-

fundamentals/dashboard> [29/08/2011]

[8] Improving Telephone Fundraising for University

Alumni | bit10 ltd [online] available from

<http://www.bit10.net/fundraising-fundamentals>

[29/08/2011]

http://www.economist.com/specialreports/displaystory.cfm?story_id=15557421
http://www.economist.com/specialreports/displaystory.cfm?story_id=15557421
http://techcrunch.com/2010/03/16/big-data-freedom/
http://techcrunch.com/2010/03/16/big-data-freedom/
http://explc.com/products/fundraising-fundamentals/dashboard
http://explc.com/products/fundraising-fundamentals/dashboard
http://www.bit10.net/fundraising-fundamentals

