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I. INTRODUCTION 

Before delving into the details of WEP, it must be 

understood that there are two main categories of WEP 

users. Many home users don’t bother setting up WEP 

because they considered it a waste of time since WEP is 

crack able, or because they find it too complicated. If you 

are the latter, find someone who knows how to enable 

WEP, and offer them dinner. Regardless of the issues 

surrounding WEP, it should be understood that cracking 

WEP is not as easy as everyone makes it sound. Although 

cracking WEP is possible on the typical home-owned 

WLAN, it would take two to four weeks to capture enough 

data to successfully extract the key. In other words, by 

simply enabling WEP and changing the secret key 

periodically, you can be fairly certain that your WLAN will 

not be hijacked by a hacker. That said, let’s take a look at 

how cracking WEP appears from a hackers point of view. 

As was previously mentioned, WEP incorporates two main 

types of protection: a secret key and encryption. The secret 

key is a simple 5- or 13-character password that is shared 

between the access point and all wireless network users. 

This key is all-important to WEP in that it is also used in 

the encryption process to uniquely scramble each packet of 

information with a unique password. This ensures that if a 

hacker cracks one packets key, he won’t be able to view 

every packet’s information. To do this, WEP defines a 

method to create a unique secret key for each packet using 

the 5- or 13-characters of the pre-shared key and three 

more pseudo-randomly selected characters picked by the 

wireless hardware. For example, let’s assume that our pre-

shared key was “games”. This word would then be merged 

with “abc” to create a secret key of “abcgames”, which 

would be used to encrypt the packet. The next packet  

 

 

Would still use “games”, but concatenate it this time with 

“xyz” to create a new secret key of “xyzgames”. This 

process would randomly continue during the transmission 

of data. This changing part of the secret key is called the 

Initialization Vector because it initializes the encryption 

process for each packet of data sent. It is important to 

understand the basics of XOR when discussing RC4 and 

WEP because it is used in the encryption process to create 

the encrypted data. XOR is just a simple binary comparison 

between two bytes that produces another byte as a result of 

a simple process. In short, it takes each corresponding bit in 

a byte and compares them by asking “Is this bit different 

from that bit?” If the answer is yes, the result is 1; 

otherwise it is a 0. Figure 1 illustrates. 

 
Figure 1 

XOR Byte Comparison Table. 
 

From this illustration, you should also note one other thing. 

Just as the resulting bit can be deduced by comparing the 

first two columns, the same can be said about the original 

bit if the XOR bit and resulting bit are compared. (for 

example, 1 XOR 1 = 0 _ 0 XOR 1 = 1). This is an 

important part of how and why WEP is crack able. 
 

RC4 

RC4 is the encryption algorithm used to cipher the data 

sent over the airwaves. It is important that data is 
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scrambled; otherwise, anyone could “see” everything using 

a sniffer. This includes all e-mails, Web pages, documents, 

and more. RC4 is a very simple and fast method of 

encryption that scrambles each and every byte of data sent 

in a packet. It does this through a series of equations using 

the previously discussed secret key. RC4 actually consists 

of two parts: the Key Scheduling Algorithm and the Pseudo 

Random Generation Algorithm. Each part is responsible for 

a different part of the encryption process. However, before 

discussing the algorithm in detail, we need to understand 

what an array is. 

 

Array Swapping 

An array is a programming term used to hold multiple 

values. For example, consider the alphabet Array (26). This 

array would hold 26 values, with each value represented by 

the number in the array. For example: 

alphabetArray(1)=a 

alphabetArray(2)=b 

alphabetArray(3)=c 

However, in the case of a secure application of an array, we 

want to scramble the values held in each position. If this 

wasn’t done, a hacker could easily predict what was in 

alphabetArray(26). To do this, a swapping function can be 

performed on the array. For example, consider the 

following illustration: 

alphabetArray(1)=A 

alphabetArray(2)=B 

Swap (alphabetArray(1), alphabetArray(2)) 

Swap(A, B) _ (B,A) 

alphabetArray(1)=B 

alphabetArray(2)=A 

As you can see, the values held in each array position were 

switched with each other. If this same process is done over 

and over again using a psuedo random routine, you won’t 

be able to tell what value is held in any of the array 

positions. 

 

KSA 

The Key Scheduling Algorithm is the first part of the 

encryption process. The following is the algorithm actually 

used in RC4 by line with an explanation for each line. 

 

Algorithm 

1. Assume N = 256 

2. K[] = Secrete Key array 

3. Initialization: 

4. For i = 0 to N – 1 

5. S[i] = i 

6. j = 0 

7. Scrambling: 

8. For i = 0 ... N – 1 

9. j = j + S[i] + K[i] 

10. Swap(S[i], S[j]) 

 

Explanation 

1. N is an index value. It determines how strong the 

scrambling process is. WEP uses a value of 256. 

2. K is the letter used to symbolize the secret key array. In 

the case of a five character, pre-shared key, this value 

would be the three-character IV + five character pre-shared 

key _ eight-character secret key. Each character is held in 

the corresponding K position. This value does not get 

scrambled. 

3. This starts the initialization of the KSA. It basically is 

used to seed the empty State (S[]) array with values 

0[nd]255. 

4. This is the start of the loop process that increases the 

value of i each time the algorithm loops. 

5. Once it is done, the S array will hold values 0[nd]255 in 

corresponding array position 0[nd]255. 

6. j is used to hold a value during the scrambling process, 

but it must first be initialized to ensure that it always starts 

at 0. 

7. This starts the scrambling process that creates the psuedo 

random S array from the previously seeded S array. 

8. Another loop that ensures the scrambling process occurs 

256 times. 

9. This is the equation used to merge the properties of the 

secret key with the state array (S[]) to create a pseudo 

random number, which is assigned to j. 

10. Finally, a swap function is performed to swap the value 

held in S[i] with the value held in S[j]. 

As you can see, this is not a terribly complex process. 

Some simple math based on the secret key, and you have a 

pseudo random state array. The next part takes this array 

and creates a stream of data that is used to encrypt the data 

to be sent over the airwaves. 

 

PRGA 

The PRGA (Pseudo Random Generation Algorithm) is the 

part of the RC4 process that outputs a streaming key based 

on the KSA’s pseudo random state array. This streaming 

key is then merged with the plaintext data to create a 

stream of data that is encrypted. 

Following is the algorithm and its explanation: 

 

Algorithm 

1. Initialization: 

2. i = 0 

3. j = 0 

4. Generation Loop: 

5. i = i + 1 

6. j = j + S[i] 

7. Swap(S[i], S[j]) 

8. Output z = S[S[i] + S[j]] 

9. Output XORed with data 

 

Explanation 

1. Again, before using the PRGA, the i and j values must 

be initialized. 

2. i initialized to 0. 

3. j initialized to 0. 

4. This starts the stream-generation processes. It will 

continue until there is no 

more data, which in WEP’s case is the end of the packet of 

data[md]or about 

1,500 bytes. 

5. i is added to itself to keep a running value used in the 

swap process. 

Note: This value will ALWAYS equal 1 the first time 

through the PRGA loop (i = i + 1 _ i = 0 + 1 = 1). 

6. j is used to hold the pseudo random number in the S[] 

position, with the previous S[] added to it. 
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Note: This value will ALWAYS hold the value held in 

S[1] for the first iteration of the PRGA (j = j + S[i] _ j = 0 + 

S[1]). 

7. Another swap function is performed that switches the 

values held in the i position and j position of the state array. 

8. z is calculated based on an addition of the value held in 

the state array, as represented by the addition of the values 

held in S[i] added to S[j]. (This will be better understood 

after seeing the example later in the article.) 

9. Finally, the z value is XORed with the plaintext to create 

a new and encrypted value. This can be represented by the 

equation encrypted data = z XOR plaintext. 

Note: XOR only requires that you know ANY two of the 

values to deduce the third. In other words, if the plaintext is 

known and the encrypted data is captured by a sniffer, a  

hacker can deduce the z value outputted by the PRGA. 

 

CRC 

There is one final part of the data-transmission process that 

needs to be mentioned due to the fact that it adds additional 

data to the packet. This is the CRC, or Cyclic Redundancy 

Checksum value. When a packet is sent across a network, 

there has to be a way for the receiving party to know that 

the packet was not altered or corrupted in transmission. 

This is accomplished via the CRC. Before the data is 

packaged and sent, a value is calculated by the CRC 

algorithm that is based on the bytes of the data. This value 

is then appended to the actual data and sent to the receiving 

party. Once the packet is received, the CRC value is 

removed, and a NEW CRC value is calculated on the 

received data. If the NEW CRC value matches the 

ORIGINAL CRC value, the packet is assumed to be 

complete; otherwise, the packet is considered corrupted and 

is dumped. As you will see next, this does affect the whole 

encryption process. 

 

Putting It All Together 

Now that we have briefly covered the basics, let’s take a 

look at how it all works together. Figures 2 and 3 provide a 

graphical representation of the whole encryption process, 

and decryption process. 

 

 
Figure 2 

Graphical representation of RC4 encryption process. 

As illustrated in figure 2, the IV is first created by the 

access point, and is merged with the 

pre-shared key to create a secret key. This key is then used 

by the KSA to create a pseudo random state array, which is 

then used by the PRGA to create a streaming key that is 

XORed with the plaintext data and its CRC value. As a 

result, the encrypted data is created and sent to the 

receiving party of the WLAN, where it is then unencrypted. 

 

 
Figure 3 

Graphical representation of RC4 decryption process. 

 

From figure 3 you can see that once the data is received, 

the IV, which is sent as plaintext appended to the encrypted 

text, is removed and merged with the pre-shared password 

to create the same secret key used in the encryption 

process. This key is then used by the KSA to create a 

duplicate pseudo random state array value that is used by 

the PRGA to create the same streaming key used to encrypt 

the plaintext. This streaming key is XORed with the 

encrypted text, which results in the creation of the plaintext 

and CRC value. The CRC value is removed, and a new 

CRC value is deduced, which is compared to the original 

CRC value. The data is then either accepted or rejected. 

 

Cracking WEP 

Now that we understand the basics of how WEP works, 

let’s review a few points. 

• The IV is sent as plaintext with the encrypted packet. 

Therefore, ANYONE can easily sniff this information out 

of the airwave and thus learn the first three characters or 

the secret key. 

• Both the KSA and PRGA leak information during the 

first few iterations of their algorithm. The i will always be 

1, and j will always equal S[1] for the 

first iteration of the PRGA, and the KSA is easily 

duplicable for the first three iterations due to the fact that 

the first three characters of the secret key is passed as 

plaintext. 

• XOR is a simple process that can be easily used to deduce 

any unknown value if the other two values are known. 

In addition to these previously explained points, there are 

several more that make WEP dangerous. 

• There is a 5% probability that the values held in 

S[0][nd]S[3] will NOT change after the first three iterations 

of the KSA. In other words, any hacker can guess what will 

happen during the KSA process with a 5% likelihood of 
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being correct. 

• The first value of the encrypted data is always the SNAP 

header, which equals “AA” in hex or “170” in decimal 

form. This essentially means that by sniffing the first byte 

of encrypted text and XORing it with 170, any hacker 

can deduce the first output byte of the PRGA. 

• In the WEP encryption process, it has been determined 

that a certain format of an IV indicates that it is a weak IV 

and subject to cracking. The format is (B + 3, 255, x) 

where B is the byte of the secret key being cracked. 

However, we know the first three characters due to the IV, 

so we want to crack the pre-shared password that starts 

after the IV. The 255 value indicates that the KSA is at a 

vulnerable point in the algorithm, and the value “x” can be 

any value. 

Now that these points have been provided, let’s take a look 

at how a hacker would use this knowledge to crack WEP. 

 

Walking Through the KSA 

As previously mentioned, the IV is sent as plaintext. This 

can be easily sniffed out of the air and used to re-create the 

first three iterations of the KSA. To illustrate, we will do 

just that. Follow closely and pay attention to the 

math[el]this will get a bit technical! 

Before getting into the details, we need to define a few 

values. 

• The captured weak IV is 3, 255, 7. This value was chosen 

because it was 

tested and is known to be a real weak IV. 

• The pre-shared password is 22222. Although a hacker 

would not know this before cracking WEP, we need to 

define it so you can see the cracking process in action. 

• N is 256. 

• If a value exists that is greater than N (256), a modulus 

operation must be performed on it. This basically divides 

the number by 256, which results in a leftover number 

called the modulus. This is the value that is passed on 

through the calculation. 

• The initialization process of the state array has already 

occurred and seeded the state array with the 256 values. 

First, we need to clarify our key array as a hacker would 

see it after capturing the IV. 

K[0]=3 K[1]=255 K[2]=7 K[3]=? K[4]=? K[5]=? K[6]=? 

K[7]=? 

Next, we need to define and track the state array values, i 

value, and j value. This will be done before each loop is 

processed, so you can see how the values change. We will 

not show all 256 state array values because they are useless 

to the cracking WEP process. Only the first four state array 

values and any value that has changed will be shown. 

KSA loop 1 

i=0 j=0 S[0]=0 S[1]=1 S[2]=2 S[3]=3 

j=j + S[i] + K[i mod l] = 0 + S[0] + K[0] = 0 + 0 + 3 = 3 à j 

= 3 

In this equation, you can see that the j and i value were 0, 

which is used by the S[] array 

(S[0] = 0) and the K[] array (K[0] = 3). This resulted in the 

values of 0, 0, and 3 being added together to assign the 

value of 3 to j. This value is then passed on to the swap 

Function below. 

i=0, j=3 

Swap (S[i], S[j]) à Swap (S[0] , S[3]) à S[0] = 0 , S[3] = 3 à 

S[0] = 3 , S[3] = 0 

In this process, you can see that values held in S[0] and 

S[3] are swapped. This is an important process to watch, 

but remember there is a 5% chance that the values held in 

S[0] _ S[3] will not change after the first 4 KSA/PRGA 

loops. 

KSA loop 2 

 

i=1 j=3 S[0]=3 S[1]=1 S[2]=2 S[3]=0 

j=j + S[i] + K[i mod l] = 3 + S[1] + K[1 mod 8] = 3 + 1 + 

255 = 259 mod 256 = 3 à j = 3 

i=1, j=3 

Swap(S[i], S[j]) à Swap (S[1] , S[3]) à S[1]=1 , S[3]=0 à 

S[1]=0 , S[3]=1 

Note that in this loop the value of i increases by one and 

that a modulus operation was performed to determine the 

value of j. It is only coincidental that j = 3 again. 

KSA loop 3 

i=2 j=3 S[0]=3 S[1]=0 S[2]=2 S[3]=1 

j=j + S[i] + K[i mod l] = 3 + S[2] + K[2] = 3 + 2 + 7 = 12 à 

j = 12 

i=2, j=12 

Swap(S[i], S[j]) à Swap (S[2] , S[12]) à S[2]=2 , S[12]=12 

à S[2]=12 , S[12]=2 

Note that up to this point, only KNOWN values are used. 

Any hacker can reproduce this process up to this point. 

However, in the next step, the secret key is unknown, so a 

hacker has to stop. 

 

KSA loop 4 

i=3 j=12 S[0]=3 S[1]=0 S[2]=12 S[3]=1 S[12]=2 

j=j + S[i] + K[i mod l] = 12 + S[3] + K[3] = 12 + 1 + ? = ? 

i=3, j=? 

Swap(S[i], S[j]) à Swap (S[3] , S[?]) à S[3]=1 , S[?]=? à 

S[3]=?? , S[??]=1 

So, now a hacker is up against a wall. However, what if 

there was a way to determine the j value at this point? 

Fortunately, for a hacker, there is a way. A simple XOR 

calculation and he can determine this value from the first 

iteration of the PRGA process. Knowing this, let’s reflect 

on the XOR process that creates the encrypted data. The 

final step of the RC4 process is to XOR a PRGA byte with 

a byte of the plaintext data. Since XOR works in both 

directions, we also know that we can get deduce the first 

byte of the PRGA if we XOR the first byte of the encrypted 

data with the first byte of plaintext. Fortunately, for a 

hacker this is easy thanks to the SNAP header (170 in 

decimal) and the use of a sniffer to capture the encrypted 

byte. In our example, we will provide the captured 

encrypted byte value (165 in decimal), which changes from 

packet to packet.  

The following equation illustrates the XOR process: 

z = 0xAA (SNAP) XOR Cipher text byte1 = 170 (Dec) 

XOR 165 (Dec) = 15 è z = 15 

As a result of this XOR calculation, a hacker can deduce 

that the PRGA value is 15 (decimal). Now, he can reverse-

engineer the PRGA process, and use this to determine the 

missing j value. First, let’s remind ourselves of the known 

loop values as they would occur entering loop 4 of the 

KSA. Remember, these values can be easily reproduced by 

the use of the IV values. 

KSA loop 4 

i=3 j=12 S[0]=3 S[1]=0 S[2]=12 S[3]=1 S[12]=2 

1. Initialization: 
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2. i=0 

3. j=0 

4. Generation: 

5. i = i + 1 = 0 + 1 = 1 

6. j = j + S[i] = 0 + S[1] = 0 + 0 = 0 

7. Swap (S[i], S[j]) à Swap (S[1] , S[0]) à S[1]=0 , S[0]=3 à 

S[1]=3 , S[0]=0 

8. z = S[S[i] + S[j]] = S[S[1] + S[0]] = S[3 + 0] = S[3] = ? 

9. ?=15 è S[3] =15 at KSA4 

From the previous discussion, you know that i will always 

equal 1 for the first iteration of the PRGA (line 5). This 

then means that j will always equal S[0] (line 6). As we can 

see from the KSA loop 4 input values, S[1] = 0. This then 

results in j being assigned the value of 0 (line 6). The 

values held in S[i] and S[j] are then swapped, which means 

that S[1] is swapped with S[0] resulting in S[1] = 3 and 

S[0] = 0 (line 7). These values are then added 

together, and used to pull a value from the state array. In 

this case, the combined S[i] and S[j] values = 3 (line 8). 

However, the S[3] value referenced to here is from the 

completion of  KSA loop 4, which is unknown to us. 

Fortunately, due to the XOR process, we know 

that the resulting value is 15, which means that S[3] will 

equal 15 at the output of KSA loop 4. Knowing this, hacker 

only needs to reverse the KSA loop 4 processes to deduce 

the secret key value. 

Let’s now walk though this as a hacker would. 

 

KSA loop 4 

i=3 j=12 S[0]=3 S[1]=0 S[2]=12 S[3]=1 S[12]=2 

S[3]=15 , S[15]=S[3]t-1 à S[3]=15 , S[15]=1 

First, we know that the final step in the KSA loop is to 

swap values. Knowing the values of the state array after 

loop 4 completes and before it starts is important. Thanks 

to the XOR weakness, we know S[3] will equal 15, and we 

can make an educated guess that S[15] will hold the value 

held by S[3] before loop 4, which is 1 in this case. As a 

result, a hacker can deduce that S[3]=15 and S[15]=1 after 

the swap. Swap (S[3] , S[15]) à S[3]=1 , S[15]=15 

Next, a hacker swaps the values held in these positions, 

which leaves S[3] equaling 1.  

j=j + S[i] + K[i mod 256] = 12 + S[3] + K[3] = 12 + 1 + 

K[3] = 15 

A hacker then plugs the values into the equation that would 

produce the j value. This fills in all the fields except the 

value of the secret key array. 

à K[3] = 15 – 12 – 1 = 2 

After a simple reverse calculation, the value 2 is produced, 

which is the first byte of out secret key! 

 

Simplifying the Process 

This was a down-and-dirty look at how a hacker could 

deduce a secret key, byte by byte. If they had to do this by 

hand, the threat of this weakness would be seriously 

lessened. 

However, this process has been written into a program that 

can perform this process in seconds if enough data is 

captured. For example, WEPCrack (which was written as 

an educational tool) and Air Snort are both programs that 

can crack the secret key in a matter of seconds if enough 

data is present. The catch is with the data. Due to the 

requirements, roughly 7GB of data must be captured, on 

average, to crack the password. This is A LOT of 

information. In fact, most home users and small businesses 

will have a tough time meeting this mark in two weeks. 

However, on the other hand, if a WLAN is fully maxed out, 

it can send this much data in two to four hours. So, the 

threat of WEP is a real and dangerous risk. 

 

II. CONCLUSION 

For those people who are concerned about this threat, there 

are several things that can be done to secure the WEP hole. 

First, use WEP. Although this may seem ridiculous, the 

simple fact that you use WEP will cause most hackers to 

skip your WLAN and move on to an unprotected target. 

Second, use a RADIUS server for authentication. This will 

ensure that each user is permitted access to the internal 

network only with a user name and password. Although 

this is some protection, the RADIUS server should also use 

a time limit on the keys. This is due to further weaknesses 

and dangers, known as ARP poisoning, in which a hacker 

can take over an existing session and bypass any RADIUS 

requirements. By setting the time to 30 minutes, you can be 

sure that no hacker can successfully crack WEP. Fourth, set 

up a VPN on top of the WLAN connection. This will 

provide further protection and require yet another password 

to connect. The downside of this is that it will slow the 

connection speed due to VPN encryption overhead. Fifth, 

control access to the internal network using the user name 

and passwords. This will protect your resources if a laptop 

is stolen or if the account information is pilfered. In 

addition to these measures, there are additional things one 

can do to increase security. Tokens, DMZs, radiation 

zones, and more can be used to control who has what 

access, where, and for how long. In short, just as with a 

regular network, you have to weigh the need with the costs 

of having users jump through more security gates to access 

their data. Too much security, and no one will use the 

service or will find ways around it. Too little, and you may 

have the wrong people accessing your data. If nothing else, 

this article should have enlightened you about how a 

hacker cracks WEP. If it can be illustrated in a few pages 

of text, imagine how easy it is to automate using a 

computer. Although the danger is real for everyone who 

uses WEP, the threat really only applies to those who have 

highly trafficked WLANs. In these cases, WEP should be 

only one part of the security defenses built to protect your 

wireless network from intrusion. 
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