
183

ALGORITHM FOR LONG DIVISION AND ITS IMPLEMENTATION IN C
LANGUAGE

Nicolai FALICO, sup. lec., PhD; Mihail KULEV, assoc. prof., PhD

Technical Univercity of Moldova

Abstract: In the paper an effective algorithm for long division and its implementation in C language,

developed by authors, has been presented. The proof of the correctness of algorithm is shown. The long
number is implemented as the array of integers: a[0] is the number of digits , a[1] is the lowest digit and
a[a[0]] is the highest, and highest digit is followed by zero. Program elaborated does not need
normalization of dividend and divisor, as well as renormalization of residue.

Keywords: Algorithm for long division, program in C language, array of integers pointers.

1. Introduction
Algorithms for long division are well known (see for example review in the fundamental work of Knut

[1]). However, simple algorithms are not effective: they need much time for execution. The main difficulty
in the effective algorithms is finding the correspondent digit of quotient. Some authors suggest finding this
digit with the help of half division [2] that is simple for writing program, but the program becomes long and
slow. Knut [1] very carefully proves simple formula that helps to find the good approximation for digits of
quotient. This formula uses two digits of dividend and one of divisor. But in the following Knut [1] uses
more complicated and more effective formula. His program written on MIX language contains more than
hundred lines of code and not works when divisor is one digit. In that case Knut suggests using another
program.

2. Algorithm description

In this paper another formula is proved:

(double)o*o* *pa1 + o* *(pa1-1) + *(pa1-2)
 *prezc= ---

o* *pa2 + *(pa2-1) + 1

It is as effective as in Knut [1] but needs no normalization of dividend and divisor and no renormalization of
residue. The proof is given in the next paragraph of the paper and is not simple, but anybody can easily
check the program using correspondent checking program and generating random inputs. We must mention,
that the close algorithms were suggested by another authors (see, for example, [3, 4]). Program elaborated
by authors is written in C (the base function has only 20 statements) and is based on special structure for
long numbers [2]. The long number is the array of integers: a[0] is the number of digits, a[1] is the lowest
digit and a[a[0]] is the highest, and highest digit is followed by zero. For example, the number 123456789
with the base o = 10000 is equal to a = {3, 6789, 2345, 1, 0}. In compare with the programs from [2], written
in Pascal and using the method of half division, the developed code uses formula for finding digits. This
make program very fast. Moving pointers that is common for C makes program short and simple and in
contrary to program of Knut does not need normalization of dividend and divisor, as well as renormalization
of residue.

 3. Proof of the algorithm correctness
 Let`s give the proof of the correctness of algorithm. The following notations will be used

=Aa =A*10k +a, =Bb =B*10k +b.

Let’s consider 0<=a,b<10k, A<10*B, B>=10 and A/(B+1)=Q.q.
It is not difficult to show that Q*<.

184

Let’s proof that (Q+2)* >.

This is equivalent to (A/(B+1)-0.q+2)*)* >, or that is the same

 (A+(1-0.q)*(B+1)+B+1)* >*(B+1) (1)

Let’s proof the following inequality. From that will be followed (1)

 (A+B+1)* >*(B+1) (2)

Inequality (2) is equivalent to (A+B+1)*(B*10k +b)> (A*10k +a)*(B+1) or

 B2*10k +B*b +A*b + B*b <A* 10k +a*B+a (3)
Let`s show that

 B2*10k - A* 10k -a>0 (4)

That is followed from a <10k and 10k *(B2 –A)>= 10k *(10*B-A) >= 10k, because 10*b-A is integer and A<
10*B. Besides that

 Bb= B*10k +b>a*B (5)

Inequality (3) is followed from (4) and (5).

4. Implementation in C language

#define o 10000L

The base is defined. For 16 – bits compiler maximum is 10000 because multiple of two 5 digit numbers is
greater than MAXLONG. For 32-bits compiler o can be 100 000 000.

void print_l(int *x,char *y){} void a_al(char *x,int *y){}

This functions converts numbers from the long mode to usual notation and backwards. They can be found
anywhere.
int les(int *mid,int *a2){
int i=*a2;
if(mid[i+1])
return 0;
while(i&&mid[i]==a2[i])
i--;
if(i==0)
return 0;
else
return (mid[i]<a2[i]);
}

This function gets pointers to two long numbers and return 1 if the first number (*mid) is less than the
second (*a2) and 0 in another case. Comparison begins from the highest digits and works i=*a2 times, that is
equal to number of digits of (*a2). Function returns 0 if the number of digits of (*mid) is greater than (*a2).
void sub(int *a1,int q,int *a2){
 int i=1;
 while(i<=*a2){
 a1{i}-=(long)q * a2[i]%o;
 a1[i+1]-=(long)q*a2[i]/o;
 while(a1[i]<0){
 a1[i]+=o;
 a1[i+1]-=1;
 }
 i++;
 }
while(i<=*a1){
while(a1[i]<0){
 a1[i]+=o;
 a1[i+1]-=1;
}
I++;

185

}
}

This function gets pointers on two long numbers and digit. Number (*a2) is multiplied by q and is subtracted
from (*a1) after working this program.
void d_l(int *a1,*a2,int *rez){
/*1*/ int *prez,*pa1=a1+*a1, *pa2=*a2+a2,*mid;
/*2*/ if((((*a1)-(*a2))>=0){
/*3*/ mid = a1+*a1- *a2;
 *rez=*a1- *a2+1;
 }else{
/*4*/ *rez=1;rez[1]=0;
 Return;
 }
/*5*/ prez=rez+*rez;
/*6/ while(prez>rez){
/*7*/ if(*a2>pa1-mid || (*a2==pa1-mid) && les(mid,a2) ==1){
/*8*/ prez-=o;
/*9*/ mid--; //snosim sled cifru
/*10*/ continue;
 }
/*11/ if(*a2==pa1-mid){
 (*a1)++;
/*12*/ pa1++; //razriad
 }
/*13*/ *prez=((double) o*o*(*pa1) + o* (*(pa1-1))+
 (pa1-2))/(o(*pa2) + (*(pa2-1)) +1);
/*14*/ sub(mid,*prez,a2);
/*15*/ if(les(mid,a2)!=1){
/*16*/ (*prez)++;
/*17*/ sub(mid,1,a2);
 }
/*18*/ while(*pa1 == 0 && pa1>1){
 pa1--;
 --*a1; //nahozdenie chisla cifr v a1
 }
/*19/ prez--;
 mid--;
}
/*20*/ if (rez[*rez]==0)
 --*rez;
}

This is the base function. It gets three pointers on log numbers. After it works in rez the quotient from
dividing a1 on a2 will be written and in a1 will be residual. In line 1 pointers prez, pa1, pa2 on the highest
ranks of numbers rez, a1, a2 are defined. Pointer mid is defined so that mid +1 is the position of digit in a1
from which the subtraction will begin. In operators 2-5 the initial values are written to that pointers and also
initial number of digits of the result is calculated. This value may be changed in the operator 20. In cycle 6
array rez is calculated from highest ranks. At first in 7-10 condition if, if the correspondent digit will be 0, is
checked and than using shift mid--, next digit of dividend is processed. Operator 13 is the core of suggested
algorithm. In it it three digits of highest ranks of dividend and two of divisor are used. In operator 11 the
number of digits of dividend and divisor is checked and if needs the highest digit of a1 becomes 0 due to
increasing number of digits on 1. In 12 the pointer to highest digit is changed. In 14 the subtracting from the
position mid +1 in dividend is processed. In 15 the condition of continuing of dividing is checked and if yes
than in 16 the result is increased on 1 and in 17 the subtracting is made. Because of that in a1 the number of
digits is changed and in 17-18 the number of digits and pointer on the highest digit is changed. In 19 the
pointer of the result is changed.

 References

1. Д.Э. Кнут ., Искусство программирования . т.2. Третье издание . Москва, 2000.
2. С. Окулов., Программирование в алгоритмах.,изд. Бином.Лаборатория знаний, 2002.
3. George E. Collins, David R. Musser: Analysis of the Pope-Stein Division Algorithm. Information
Processing Letters, 151-155, V.6, N.5, October 1977.
4. E.V. Krishnamurthy, Salil K. Nandi: On the normalization requirement of divisor in divide-and-correct
methods. Communications of the ACM (CACM), 809-813. V. 10, N. 12, December 1967.

