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INTRODUCTION 
 

There was a time when electric utilities could 
afford building oversized transmission systems. 
However, this state of affairs has appreciably changed 
as a result of power system restructuring and 
deregulation. Nowadays, working under economical 
and environmental constraints, utilities rarely resort to 
transmission system expansion. Due to this and some 
other factors, in the last three decades, transmission 
systems have been operated much closer to their 
voltage stability limit (or loadability limit). Several 
factors are responsible for this [1]: environmental 
pressures on transmission expansion, increased 
electricity consumption in heavy load areas (where it 
is not feasible or economical to install new generating 
plants), new system loading patterns due to the 
opening up of the electricity market, etc. A number of 
voltage instability incidents have been experienced 
around the world [2]. As a consequence, voltage 
stability has become a major concern in power system 
planning and operation. From the power system 
security point of view, knowledge of the critical 
power and voltage is very important as the operating 
voltage, and power, at the system nodes should be 
kept as far away as possible from their critical values. 
Online monitoring of the stability status is essential 
when operating the system near its loadability limit. 
As expected, significant research efforts have been 
devoted to construct a more comprehensive 
understanding of voltage stability issues and develop 
methods for recognizing and resolving them. 

Various loadability assessment methods have been 
proposed in the literature [1]-[16], most of them being 
suitable only for offline system analysis. Usually 
these methods are based on power flow analysis and 
properties of the associated Jacobian matrix. 
However, in a real power system, the size of the 
problem is so large that the computation is too time-
consuming; therefore most of these methods are  
unsuitable for online loadability assessment. Perhaps  
the simplest loadability assessment method is to 
repeatedly perform power flow computations,  
 
gradually increasing the load until the loadability 

limit is slightly violated and convergence to any real 
solution is no longer possible. However, this method 
has an inherent convergence problem in close 
proximity of loadability limit point because the power 
flow Jacobian matrix becomes singular at this point. 
The continuation power flow method [1]-[6] 
overcomes this problem by reformulating the power 
flow equations so that they remain well-conditioned 
at all possible loading conditions. Although the 
continuation method is robust and flexible, it is very 
slow and time-consuming. A method based on 
continuation power flow using model trees is 
proposed in [7], which has an increased computation 
speed. In [8]-[12] and [24], the problem of maximum 
loadability limit determination is formulated as an 
optimization problem. The latter paper proposes a 
direct internal point optimization method, which is 
very effective in dealing with a great number of 
power flow unsolvable cases, when the Jacobian 
matrix is ill-conditioned. Neural networks based 
approaches for online prediction of the closest 
loadability margin are proposed in [13]-[14]. Another 
approach for real-time determination of loadability 
limit, successfully installed and proven in several 
Energy Management Systems, is presented in [15]. 
An approach for maximum loadability assessment in 
a probabilistic framework is proposed in [16].   

In this paper, a new approach for loadability 
assessment is proposed, which is based on power flow 
in complex form. It is well-known [20] (page 98) that 
the complex power flow equations do not meet 
Cauchy-Riemann conditions [21] (page 35); therefore 
the Newton-Raphson method cannot be directly 
applied in this case. Conventionally, this problem is 
overcome by splitting each complex power flow 
equation into two real equations. The approach 
proposed in this paper consists in performing some 
manipulations on conventional complex power flow 
equations and as a result obtaining a new system of 
complex power flow equations, which meet Cauchy-
Riemann conditions. Thus, now the calculation of 
derivatives with respect to complex variables is 
possible, consequently the Newton-Raphson method 
can be directly applied to complex power flow 
equations. Moreover, these new complex power flow 
equations have solutions beyond the loadability limit 
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point, which can be successfully employed in 
loadability assessment. An approach for solving the 
power flow equations in complex form has been 
previously reported in [17]-[19], but it involves 
solving twice as many complex power flow equations 
as usual and has some significant drawbacks 
discussed in section V. 

Also, this paper proposes a new approach for 
loadability assessment, named parabola 
approximation approach, which is based on some 
properties of the solutions obtained beyond the 
loadability limit point. It consists in performing three 
computations of power flow in complex form beyond 
the loadability limit point, and then based on obtained 
solutions the imaginary part of PV curve is 
approximated by a parabola the constant term of 
which is the node power limit. Since only three power 
flow computations have to be performed, the 
proposed approach is not much time-consuming and 
can be successfully applied in online loadability 
assessment. 

 
 

1. POWER FLOW IN COMPLEX FORM 
 

First, the concept of Power Flow in Complex Form 
is explained using a two-node system. Then, its 
application to a multi-node system is presented. 

A.  Two-node System 
For a two-node system, it is possible to analytically 

obtain the power flow solutions and determine the 
loadability limit. Therefore, the two-node system 
analysis presented below will be useful for gaining 
insight into the proposed concepts. 

The power flow computation for a two-node 
system shown in Figure 1 involves solving the 
following equation: 
          ( )11 1 12 2 1 1̂

ˆY U Y U U S+ =                                    (1) 

Alternatively, the following equation, which is the 
conjugate of (1), can be solved: 

       ( )11 1 12 2 1 1
ˆ ˆ ˆ ˆY U Y U U S+ =                                  (2) 

The well known Newton-Raphson technique 
cannot be directly applied to solve (1), because it does 
not satisfy the Cauchy–Riemann conditions [21] 
(page 35), hence preventing the application of 
derivatives in complex form [20] (page 98). 
Therefore, the conventional way of solving                                    
(1) is to split it into two real equations and solve them 
simultaneously applying the Newton-Raphson 
method. It is well known that (1) has no solutions 

beyond the loadability limit point, therefore the 
conventional power flow diverges. Also, the Newton-
Raphson technique is prone to divergence in the 
proximity of loadability limit point (because of 
singularity of the Jacobian matrix), although solutions 
exist. Thus, sometimes it is not clear whether the 
divergence is caused by system overloading or it is 
due to imperfections of the solution technique used in 
power flow computation. 
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Figure 1. Two-node power system. 

 

In order to be able to apply the Newton-Raphson 
method in complex form the following approach is 
proposed. 

From  (2), the expression for calculating 1Û  is 
obtained: 

                    
1

1

11
2

11

12
1 ˆ

1ˆ
ˆ
ˆˆ

U
S

Y
U

Y
YU +−=                           (3) 

Now, after substituting                           (3) in                    
(1)(1) and performing some manipulations, the 
following quadratic equation is obtained: 
                     01

2
1 =++ CUBUA                            (4) 

Where: 21211
ˆˆ UYYA −= ,

 221212111111
ˆˆˆˆ UUYYSYSYB −−= , 

 1212 SUYC = . 
Equation (4) has the following properties which 

have been identified through analytical and numerical 
investigations: 

1) It satisfies the Cauchy–Riemann conditions, so 
the Newton-Raphson method in complex form can be 
applied for solving it. 

2) Its discriminant is a real number, which is 
positive up to the loadability limit point and negative 
beyond it. 

3) It has two solutions, both up to and beyond the 
loadability limit point. 

4) Up to the loadability limit, one of the solutions 
corresponds to the stable steady-state (upper part of 
PV-curve) and the other one to the unstable steady-
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state (lower part of PV-curve). 

5) In the point of loadability limit the 
discriminant is equal to zero and there is only one 
solution. 

6) Solutions obtained up to the loadability limit 
point satisfy (1) and  (2). 

7) A solution obtained up to the loadability limit 
being substituted in (3) will result in its conjugate. 

8) Solutions obtained beyond the loadability limit 
point mathematically satisfy the applied model 
(equation (4)), but they cannot physically exist in a 
real power system. 

9) Any solution obtained beyond the loadability 
limit point being substituted in (3) will not result in its 
conjugate. Thus, beyond the loadability limit point 

1Û  calculated with (3) is not equal to the conjugate of 

1U  and this fact can serve as criterion that the power 
enforced in node 1 is above the loadability limit. 

The voltage magnitude in node 1 1V  can be 
calculated with the following formula: 
                             111 ÛUV =                                 (5) 

Since up to the loadability limit point 1Û  is equal 
to the conjugate of 1U , 1V  is a real number. As 
mentioned above, beyond the loadability limit point, 

1Û  (calculated with (3)) is not equal to the conjugate 
of 1U , therefore in this case 1V  is a complex number. 
Thus, beyond the loadability limit point, 1V  has the 
imaginary part and the two solutions obtained for 1V  
are complex conjugates. These two solutions obtained 
beyond the loadability limit point mathematically 
satisfy the applied model, but they cannot physically 
exist in a real power system. However, the fact that 1V  
calculated with                                 (5) is a complex 
number indicates that the power enforced in node 1 is 
above the loadability limit. 

Now, let us exemplify, considering a two-node 
system with the following parameters: 

24.48 34.72Z j= + Ω ,  6208.8 10Y j −= ⋅ S,  2 116U =  V. 
For a two-node system, the power limit can be 

calculated analytically, by equating the discriminant 
of (4) to zero and solving the resulting equation for 

1P , provided that 1cosθ  (power factor) is known. In 
the two-node system under consideration, assuming 
that 1cos 0.85θ =  (lagging), the analytically calculated 
power limit in node 1 is: 1,lim 70.31848097515315P = −  
MW. 

Stressing the system by gradually increasing the 
consumption in node 1 from 0 to 100 MW (in steps of 
0.1MW),while keeping 1cos 0.85constθ = =  (lagging), 
a series of solutions for 1V  has been obtained. Using 
these solutions the PV curve shown in Figure 2 has 
been drawn. 

From Figure 2 we can see that up to the loadability 
limit point the voltage magnitude in node 1 1V  is a 
real number (the imaginary part is zero). Beyond the 
loadability limit point 1V  is a complex number (the 
imaginary part is different from zero). Also, the two 
solutions obtained for 1V  are complex conjugates. 
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Figure 2. PV curve for the two-node system under 

consideration. 
B.  Multi-node System 

The idea explained in previous subsection for a 
two-node system is equally applicable to a multi-node 
power system. For convenience and ease of 
explanation the system nodes are numbered as 
follows: 

 
NPQ                      –  number of PQ-nodes; 
NPV        –  number of PV-nodes; 
N = NPQ+NPV+1  –  total number of nodes; 
1 … NPQ       –  PQ-nodes; 
NPQ +1 … NPQ +NPV –  PV-nodes; 
N         –  Slack-node. 
 
For each PQ-node ( PQNi …1= ) the following 

equation is written: 
                           i

N

k
kkii SUYU ˆˆ

1
, =∑

=
                            (6) 

For each PV-node ( PVPQPQ NNNi ++= …1 ) the 
following equation is written: 
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          i

N

m
mmii

N

k
kkii PUYUUYU 2ˆˆˆ

1
,

1
, =+ ∑∑

==
                      (7) 

Also, for each PQ-node ( PQNi …1= ) the following 
equation is written: 

                    
i

i
N

k
kki U

SUY =∑
=1

,
ˆˆ                                       (8) 

Finally, for each PV-node 
( PVPQPQ NNNi ++= …1 ) the following equation is 
written: 

                            
i

i
i U

V
U

2
ˆ =                                        (9) 

Equations (8) and (9) combined together and 
presented in matrix form look as follows: 

[ ] [ ]
[ ]

[ ]

1
1

12
2 3

ˆˆ ˆ ˆ0

ˆ 00 0

PQ d PQPQ PV slack

PVdPV

U S UY Y I

UVE U

−

−

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⋅ = ⋅ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦⎣ ⎦

(10) 

Where: 
Zero matrixes [ ]0 , [ ]10 , [ ]20 , 30⎡ ⎤⎣ ⎦  and identity 

matrix [ ]E  have the following sizes: PQPV NN × , 

PVPQ NN × , PQPV NN × , 1PVN ×  and PVPV NN × , 
respectively. 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

ˆ ˆ ˆ

ˆ ˆ ˆ
ˆ

ˆ ˆ ˆ

PQ

PQ

PQ PQ PQ PQ

N

N
PQ

N N N N

Y Y Y

Y Y Y
Y

Y Y Y

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎡ ⎤ ⎢ ⎥=⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"

"

" " " "

"

      

 
1

2

0 0
0 0

0 0
PQ

d

N

S
S

S

S

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"

" " " "
"

 

       

1, 1 1, 2 1,

2, 1 2, 2 2,

, 1 , 2 ,

ˆ ˆ ˆ

ˆ ˆ ˆ
ˆ

ˆ ˆ ˆ

PQ PQ PQ PV

PQ PQ PQ PV

PQ PQ PQ PQ PQ PQ PV

N N N N

N N N N
PV

N N N N N N N

Y Y Y

Y Y Y
Y

Y Y Y

+ + +

+ + +

+ + +

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎡ ⎤ ⎢ ⎥=⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"

"

" " " "

"

 

        

2
1

2
22

2

0 0

0 0

0 0

PQ

PQ

PQ PV

N

N
d

N N

V

V
V

V

+

+

+

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎡ ⎤ = ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎣ ⎦

"

"

" " " "
"

   

    

1,

2,

,

ˆ

ˆ
ˆ ˆ

ˆ
PQ

N

N
slack N

N N

Y

Y
I U

Y

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ = ⋅⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
 

1

2

ˆ

ˆ
ˆ

ˆ
PQ

PQ

N

U

U
U

U

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ = ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
  

1

2

ˆ

ˆ
ˆ

ˆ

PQ

PQ

PQ PV

N

N
PV

N N

U

U
U

U

+

+

+

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎡ ⎤ ⎢ ⎥=⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
  

ˆ
ˆ

ˆ
PQ

PV

U
U

U

⎡ ⎤⎡ ⎤
⎣ ⎦⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥⎡ ⎤⎢ ⎥⎣ ⎦⎣ ⎦

 

1

21

1
1

1
PQ

PQ

N

U
U

U

U

−

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
  

1

21

1

1

1

PQ

PQ

PQ PV

N

N
PV

N N

U

U
U

U

+

+−

+

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎡ ⎤ = ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
 

1

1

1

PQ

PV

U
U

U

−

−

−

⎡ ⎤⎡ ⎤⎣ ⎦⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥⎡ ⎤⎣ ⎦⎣ ⎦

 

The inverse of matrix 
[ ] [ ]

ˆ ˆ

0
PQ PVY Y

E

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥
⎣ ⎦

 is calculated 

as follows: 

    
[ ] [ ] [ ] [ ]

1
ˆ ˆ ˆ ˆ

ˆ
0 0
PQ PV PQ PVY Y Z Z

Z
E E

−
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎡ ⎤ ⎢ ⎥ ⎢ ⎥= =⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

         (11) 

Where: 1ˆ ˆ
PQ PQZ Y

−
⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦

  and  1ˆ ˆ ˆ
PV PQ PVZ Y Y

−
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − ⋅⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. 

After the left multiplication of both sides of (10) by 
Ẑ⎡ ⎤
⎣ ⎦  the following equation is obtained: 

           
[ ] [ ]

[ ]
[ ]

1
1

12
2 3

ˆ ˆ ˆ
ˆ

ˆ 0

ˆ0

0 0

PQ PQ PV

PV

d PQ slack

PVd

U Z Z
U

EU

S U I

UV

−

−

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎣ ⎦⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎡ ⎤ ⎢ ⎥= = ⋅⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎣ ⎦⎢ ⎥⎣ ⎦⎣ ⎦
⎛ ⎞⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤⎣ ⎦⎣ ⎦⎜ ⎟⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ ⋅ −⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤⎡ ⎤⎜ ⎟⎡ ⎤⎣ ⎦⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦⎝ ⎠

    (12) 

Now, the following notations are introduced: 

[ ] [ ]
[ ]

[ ]
11 121

2
2 21 22

ˆ ˆ 0

00

dPQ PV

d

A ASZ Z
A

V A AE

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥⎡ ⎤ = ⋅ =⎣ ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎡ ⎤ ⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

(13) 

Where: 11
ˆ

PQ dA Z S⎡ ⎤⎡ ⎤ ⎡ ⎤= ⋅⎣ ⎦ ⎣ ⎦⎣ ⎦ ,  2
12

ˆ
PV dA Z V⎡ ⎤⎡ ⎤ ⎡ ⎤= ⋅ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ,  

 [ ]21 0A⎡ ⎤ =⎣ ⎦ ,   and   2
22 dA V⎡ ⎤ ⎡ ⎤= ⎣ ⎦⎣ ⎦ . 

[ ] [ ] 33

ˆ ˆ ˆ

00 0
PQ PV slack PQZ Z I B

B
E

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎢ ⎥= ⋅ =⎣ ⎦ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤⎡ ⎤ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
             (14) 

Where  ˆ ˆ
PQ PQ slackB Z I⎡ ⎤ ⎡ ⎤⎡ ⎤ = ⋅⎣ ⎦ ⎣ ⎦ ⎣ ⎦ . 

Considering (13) and (14), (12) is rewritten as 
follows: 

1
11 12

1
321 22

1

ˆ
ˆ

ˆ 0

PQ PQ PQ

PVPV

U A A U B
U

UA AU

A U B

−

−

−

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎢ ⎥= = ⋅ − =⎣ ⎦ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⋅ − ⎣ ⎦⎣ ⎦⎣ ⎦

 (15) 

From  (15), the following formula is derived for 
calculating the conjugated node voltages: 
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i

NN

k k

ki
i B

U
A

U
PVPQ

−= ∑
+

=1

,ˆ , PVPQ NNi += …1                   (16) 

Substituting (16) in (6) and (7) the following 
equations are obtained: 

For PQ-nodes ( PQNi …1= ): 

              
,

,
1 1

ˆ ˆ

ˆˆ 0

PQ PVN N Ni k
i i i k k i

k kk

i i i

A
S B Y U S

U

U I S

+

= =

⎛ ⎞
Δ = − − =⎜ ⎟⎜ ⎟

⎝ ⎠

= − =

∑ ∑
        (17) 

For PV-nodes ( PVPQPQ NNNi ++= …1 ): 

,
,

1 1

,
, ,

1 1

ˆ ˆ ˆ 2

ˆ ˆ 2 0

PQ PV

PQ

PQ PV PQ PV

N N Ni k
i N i i k k

k kk

N N N N
m k

i i m m i N N i
m k k

i i i i i

A
P B Y U

U

A
U Y B Y U P

U

U I U I P

+

−
= =

+ +

= =

⎛ ⎞
Δ = − +⎜ ⎟⎜ ⎟

⎝ ⎠
⎡ ⎤⎛ ⎞
⎢ ⎥+ − + − =⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

= + − =

∑ ∑

∑ ∑  (18) 

Where: ,
1

N

i i k k
k

I Y U
=

= ∑     and  ,
1

ˆ ˆ ˆN

i i m m
m

I Y U
=

= ∑ . 

The Jacobian matrix of the obtained system of 
nonlinear complex equations (17) and  (18) is: 

        

Ŝ
HU

J
LP

U

⎡ ⎤⎡ ⎤∂Δ
⎢ ⎥⎢ ⎥ ⎡ ⎤⎡ ⎤∂ ⎣ ⎦⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎡ ⎤ = =⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎡ ⎤∂Δ⎡ ⎤⎢ ⎥ ⎣ ⎦⎣ ⎦⎢ ⎥⎢ ⎥∂⎣ ⎦⎣ ⎦

                                      (19) 

The elements of the Jacobian matrix are calculated 
with (20), (21) and (22). 

                      ,
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Where:  PQNi …1=     and     PVPQ NNj += …1 . 
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Where   PVPQPQ NNNi ++= …1 . 
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Where: PVPQPQ NNNi ++= …1 ,    

PVPQ NNj += …1 , 
and    ij ≠ . 

Voltage corrections and new voltages at the kth 
iteration are calculated respectively with (23) and 
(24). 

[ ] [ ]
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1 ˆ ˆHS S
U J
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−
⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤Δ Δ⎣ ⎦⎣ ⎦ ⎣ ⎦⎢ ⎥⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤Δ = − ⋅ = − ⋅⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎡ ⎤Δ Δ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

            (23) 

               
( ) ( ) ( )1k k k

U U U
−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦                         (24) 
Modeling of FACTS devices is covered in [19] and 

[23]. 
 
 

2.  LOADABILITY ASSESSMENT 
USING PARABOLA APPROXIMATION 
 

a. Parabola Approximation Technique 
Examining the imaginary part of the PV curve 

shown in Figure 2, it can be observed that beyond the 
loadability limit point this curve looks like a parabola. 
Therefore it is proposed here to approximate this 
curve with the following second-order polynomial: 
            ( ) ( )2

1 2 1 1 1 0P a imag V a imag V a⎡ ⎤ ⎡ ⎤= ⋅ + ⋅ +⎣ ⎦ ⎣ ⎦        (25) 
In order to determine the polynomial coefficients 

2a , 1a  and 0a  it is sufficient to have information on 
three points from the imaginary part of PV curve. 
This information can be obtained by performing three 
power flow computations in complex form, for three 
different 1P  beyond the loadability limit point. Then 
the polynomial coefficients are determined solving 
the following set of linear equations: 

     

( ) ( )

( ) ( )

( ) ( )

( )

( )

( )

21 1
11 1

1222 2 2
1 1 1 1

32 03 3 1
1 1

( ) ( ) 1

( ) ( ) 1

( ) ( ) 1

imag V imag V
Pa

imag V imag V a P
a P

imag V imag V

⎡ ⎤⎡ ⎤
⎢ ⎥ ⎡ ⎤⎣ ⎦ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎡ ⎤⎢ ⎥ ⎢ ⎥⋅ =⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎢ ⎥⎡ ⎤ ⎣ ⎦⎢ ⎥⎣ ⎦⎣ ⎦

      (26) 

Where the upper index enclosed by parentheses is 
the point number: 1, 2 and 3. 

Actually, only 0a  is of interest here, so only this 
polynomial coefficient has to be calculated. It can be 
easily observed that the constant term 0a  of the 
approximation polynomial (25) corresponds to the 
limit power lim,1P , so generally lim,10 Pa ≈ . Thus, 
performing only three power-flow computations 
beyond the loadability limit point we can estimate the 
loadability limit. 

b. Numerical results for a two-node system 
The same two-node system as described in section 

III has been used here for exemplifying the above 
proposed parabola approximation technique. 
Numerical results for five loadability assessment case 
studies are presented in Table. 
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Table 1. Loadability assessment using parabola 
approximation : two-node system case study 

 

Case 
no. 

Point 
no. 

Power flow results Estimated 
P1,lim, MW 

Error, 
% P1, 

MW 
Imag(V1), 

kV 

1 
1 -70.4 1.9820 

- 70.31848097515334 -3e-13 2 -70.5 2.9575 
3 -70.6 3.6832 

2 
1 -71 5.7307 

- 70.31848097515319 -6e-14 2 -72 9.0016 
3 -73 11.3674 

3 
1 -71 5.7307 

- 70.31848097515317 -2e-14 2 -100 37.8192 
3 -140 57.9466 

4 
1 -85 26.5983 

- 70.31848097515318 -4e-14 2 -95 34.4870 
3 -105 40.8807 

5 
1 -140 57.9466 

- 70.31848097451268 9e-10 2 -141 58.3609 
3 -142 58.7723 

 
Based on results presented in Table the following 

conclusions can be inferred for a two-node system: 
1) The loadability limit determined using 

parabola approximation technique can be considered 
as one precisely calculated. 

2) The accuracy of the loadability limit 
determined using parabola approximation approach 
practically does not depend on positions of those 
three points used for calculating the parabola 
coefficients. 

3) Therefore, not only the imaginary part of PV 
curve looks like a parabola, but it is actually a 
parabola. 

c. Numerical results for a multi-node system 
The single-line diagram of a three-machine, nine-

bus meshed system under consideration is shown in 
Figure 3. The power flow results are presented 
respectively in  

Table  and Table . All the values are in per unit on 
100 MW base. The buses are numerated in the 
following order: first PQ-nodes, then PV-nodes, and 
finally the slack-bus. 

The simulations have been carried out using 
Matlab software. A program has been written in 
Matlab to implement the power flow in complex form 
technique presented in section III. 

GS GS

G
S

7 1 2 3

456

8

9

Figure 3. Three-machine, nine-bus meshed system 
Transmission line data and bus data together with  

 
Table 2. Transmission line data for the system in 
fig.3 
 

From 
Bus 

Number 

To Bus 
Number 

Series 
Resistanc

e 
Rs (pu) 

Series 
Reactanc

e 
Xs (pu) 

Shunt 
Susceptanc

e 
B/2 (pu) 

7 1 0 0.0625 0 
1 2 0.0085 0.072 0.0745 
2 3 0.0119 0.1008 0.1045 
3 8 0 0.0586 0 
1 6 0.032 0.161 0.153 
3 4 0.039 0.17 0.179 
5 6 0.01 0.085 0.088 
5 4 0.017 0.092 0.079 
9 5 0 0.0576 0 

 
Table 3. Bus data and power flow results for the 
system in Figure 3 
 

Bus Voltage PG 
(pu) 

QG 
(pu) 

PL 
(pu)

QL 
(pu)No. Typ

e 
Magnit
. (pu) 

Angle 
(deg.) 

1 PQ 1.0258 3.7197 0 0 0 0 
2 PQ 1.0159 0.7275 0 0 1.0 0.35
3 PQ 1.0324 1.9667 0 0 0 0 
4 PQ 1.0127 -3.6874 0 0 0.9 0.3 
5 PQ 1.0258 -2.2168 0 0 0 0
6 PQ 0.9956 -3.9888 0 0 1.25 0.5 
7 PV 1.025 9.2800 1.63 0.0665 0 0 
8 PV 1.025 4.6648 0.85 -0.1086 0 0 
9 Slack 1.04 0 0.7164 0.2705 0 0 
 
Node 2 has been chosen for loadability assessment. 

The system has been stressed by gradually increasing 
the load in node 2 (from 0 to 8 pu, in steps of 0.001 
pu), while keeping the power factor constant. The 
lower part of PV curve has been built up by moving in 
the opposite direction (decreasing 2LP , from 8 to 0 pu). 
A series of power flow computations using the above 
mentioned program have been performed in order to 
build up the PV curve for node 2. The first power flow 
has been computed using flat start. The subsequent 
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power flow computations have been performed starting 
with the preceding power flow solution. The resulting 
PV curve is shown in Fig. 4. 

The following conclusions can be drawn from          
Fig. 4: 

1) The imaginary part of 2V  is zero for lim,22 PPL ≤  
and is different from zero beyond the loadability limit 
point ( lim,22 PPL > ). 

2) Like in two-node system case, beyond the 
loadability limit point there are two complex 
conjugated solutions. 

3) Therefore, the imaginary part of PV curve is 
symmetric about the P-axis and looks like a parabola. 

4) Thus, the parabola approximation technique 
proposed above can also be applied to multi-node 
systems. 
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Fig. 4.  PV curve for bus 2 of multi-node system 
The parabola approximation technique has been 

applied to the multi-node system under consideration 
(shown in Figure 3) for estimating the loadability 
limit in node 2. Numerical results for seven 
loadability assessment case studies using parabola 
approximation technique are presented in Table 4.  

Based on results presented in Error! Not a valid 
bookmark self-reference. the following conclusions 
can be inferred for a multi-node system: 

1) The accuracy of the loadability limit 
determined using parabola approximation technique is 
quite satisfactory. The error is below 5%. 

2) The accuracy slightly depends on positions of 
those three points used for calculating the parabola 
coefficients. A better precision is achieved when at 
least one point is situated close to the loadability limit 
point. 

Table 4. Loadability assessment using parabola 
approximation: nine-node meshed system case study 

 

Case 
no. 

Point 
no. 

Power flow results Estimated 
PL2,lim, pu 

Estimation 
error, % PL2, pu Imag(V2), 

pu 

1 
1 4.68 0.0234 

4.6725 -0.05 2 4.69 0.0355 
3 4.70 0.0444 

2 
1 4.70 0.0444 

4.6763 -0.14 2 4.80 0.0947 
3 4.90 0.1255 

3 
1 4.70 0.0444 

4.6978 -0.59 2 6.40 0.3305 
3 8.00 0.4518 

4 
1 6.90 0.3731 

4.7707 -2.16 2 7.00 0.3810 
3 7.10 0.3887 

5 
1 7.90 0.4452 

4.8199 -3.21 2 8.00 0.4518 
3 8.10 0.4582 

6 
1 8.90 0.5065 

4.8708 -4.30 2 9.00 0.5121 
3 9.10 0.5178 

7 
1 5.00 0.1497 

4.7431 -1.57 2 7.00 0.3810 
3 9.00 0.5121 

 
3) Thus, performing only three power flow 

computations in complex form, beyond the loadability 
limit point, we can estimate the loadability limit with 
an error below 5%. 

4) In order to obtain a better accuracy, the same 
procedure has to be repeated. This time, the positions 
of those three points used for calculating the parabola 
coefficients are chosen close to the loadability limit 
obtained in previous step. Performing two steps of 
parabola approximation, the loadability limit can be 
determined very accurately (error below 0.5%). 

 
 
3. SPARSITY, CONVERGENCE AND 

ILL-CONDITIONING ISSUES  
a. Sparsity 
It was mentioned earlier that an approach for 

solving the power flow equations in complex form 
has been previously reported in [17]-[19]. This 
method has the advantage that the sparsity of the 
Jacobian matrix is preserved, which is a key 
advantage in terms of computing time and memory 
storage in case of large power systems. This 
advantage is obvious when performing power flow 
computations up to the loadability limit point for 
large power systems. However, the method presented 
in [17]-[19] has also disadvantages. The problems 
with this method appear when performing power flow 
computations beyond the loadability limit point. In 
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this case, the computation time increases considerably 
due to the increased number of iterations. The number 
of iterations depends on initial voltage values 
imposed at the beginning of Newton-Raphson 
algorithm. Beyond the loadability limit point, it is 
very difficult to predict the initial voltage values that 
will ensure a small number of iterations, especially 
for large power systems. Therefore, it is practical to 
use the flat start, which results in an increased number 
of iterations with this method. Simulations show that 
the number of iterations increases up to 70 and more. 
Thus, although the computation time of a single 
iteration is reduced due to sparsity of the Jacobian 
matrix, the overall computation time increases 
considerably because of an increased number of 
iterations. 

The method proposed in this paper does not have 
the above mentioned disadvantage. When performing 
power flow computations beyond the loadability limit 
point, using the method proposed in this paper and 
flat start, the convergence is ensured in 7-9 iterations. 
Although the computation time of a single iteration is 
increased, comparative with the method presented in 
[17]-[19], the overall computation time is reduced 
because of a small number of iterations. 

As regards to memory storage requirements, 
nowadays, the computer memory is not an issue. 

b. Convergence 
Another significant disadvantage of the method 

presented in [17]-[19] is that it is prone to 
convergence towards unwanted solutions when 
performing power flow computations beyond the 
loadability limit point. This method is very sensitive 
to initial voltage values imposed at the beginning of 
Newton-Raphson algorithm. In order to direct this 
method to converge towards the appropriate solutions, 
the initial voltage values have to be chosen very 
carefully, that, in case of large power systems, is not a 
trivial issue and it is also time consuming. Otherwise, 
inappropriate solutions can be obtained, which are 
useless (cannot be used for loadability limit 
determination). 

The power flow in complex form algorithm 
proposed in this paper reliably converges towards the 
appropriate solutions from flat start and there is no 
need in guessing the initial voltage values. 

c. Ill-conditioning 
Although the method proposed in this paper has 

the disadvantage that the sparsity (inherent in the 
original set of power flow equations) is destroyed, the 
Jacobian matrix is better conditioned, comparative 

with the method presented in [17]-[19]. This 
constitutes an advantage when performing power 
flow computations in proximity of the loadability 
limit point, where the Jacobian matrix is ill-
conditioned, but also beyond the loadability limit 
point. 

The problem of ill-conditioning usually appears in 
proximity of the loadability limit point. The 
loadability limit assessment approach proposed in this 
paper is based on complex power flow computations 
beyond the loadability limit point, where the Jacobian 
matrix is better conditioned than in its proximity. 
Numerous simulations have been carried out using the 
method proposed in this paper and no convergence 
problems have been encountered. 

d. Comparative analysis 
A comparative study has been performed, using the 

IEEE 300 Bus Power Flow Test Case [22] The 
simulations have been carried out on a Sony VGN-
NW110D laptop using Matlab. In order the 
comparison to make sense, the method proposed in 
this paper and that presented in [17]-[19] have been 
tested under absolutely identical conditions. All the 
power flow computations have been performed using 
flat start. The solutions beyond the loadability limit 
point have been obtained by imposing a load of 9000 
MW in node 1, all the other power flow data 
remaining unchanged. The simulation results are 
presented in Tabel 5. 
 
Table 5. Comparative analysis: IEEE 300 bus power 
flow test case 

 

Method Presented in [17] – [19] Proposed in the present 
paper 

Power flow 
condition 

Up to the 
loadability 
limit point 

Beyond the 
loadability 
limit point 

Up to the 
loadability 
limit point 

Beyond the 
loadability 
limit point 

Computation 
time, 
seconds 

1.8 15.8 5.3 11.5 

Number of 
iterations 6 72 4 9 

Condition 
number 

1.0952×10
5 

3.2262×10
6 

7.4583×10
4 

6.5723×10
4 

Convergence 

Converged 
to 
appropriate 
solutions 

Converged 
to 
unwanted 
solutions 

Converged 
to 
appropriate 
solutions 

Converged 
to 
appropriate 
solutions 

 
From Table 5, it can be seen that the method 

proposed in this paper has a better performance, 
comparative with the method presented in [17]-[19], 
when the power flow computations are carried out 
beyond the loadability limit point. To be mentioned 
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that the loadability limit assessment approach 
proposed in this paper is based on complex power 
flow computations beyond the loadability limit point. 
Using for this purpose the method presented in [17]-
[19] can lead to erroneous results and increased 
computation time, due to drawbacks explained earlier. 

 
 

4. NOMENCLATURE  
 

    iU , iÛ  –  complex voltage at bus i and its 
conjugate*; 
    iV  –  voltage magnitude at bus i; 

    iS , iŜ  –  complex power at bus i and its 
conjugate; 
     iP  –  active power at bus i; 

    jiY , , jiY ,
ˆ  –  element from row i and column j of the 

bus admittance matrix and its conjugate. 
* iÛ  is the conjugate of iU  only up to the loadability 

limit point. Beyond it, this does not hold true and iÛ  
should be treated as an independent variable. 
 
 
                        CONCLUSIONS 
 

This paper proposes an approach for solving the 
power flow equations in complex form, i.e. without 
resorting to splitting each complex equation into two 
real equations. The conventional complex power flow 
equations are modified to meet the Cauchy-Riemann 
conditions and then are solved in complex numbers 
by applying the Newton-Raphson technique for 
complex variables (complex node voltages). 

The proposed power flow in complex form 
converges beyond the loadability limit point, where 
the conventional power flow diverges. Although the 
solutions obtained beyond the loadability limit point 
are fictitious ones, they can be employed in 
loadability assessment. Beyond the loadability limit 
point, the node voltage magnitudes calculated with                                 
(5) are complex numbers, indicating that the power 
enforced in one or more nodes is above the loadability 
limit. Also, beyond the loadability limit point, the 
solutions obtained for node voltage magnitudes 
appear in complex conjugate pairs. 

Since beyond the loadability limit point the node 
voltage magnitude is a complex number, the PV curve 
consists of two parts: real and imaginary (see Figure 2 
and Fig. 4). Up to the loadability limit point, the 

imaginary part of PV curve is zero. Beyond the 
loadability limit point, the imaginary part of PV curve 
is different from zero and it looks like a parabola. 
Therefore, it is proposed to approximate the 
imaginary part of PV curve with a parabola. The 
constant term of the approximation polynomial 
corresponds to the limit power. 

Using the parabola approximation approach 
proposed in this paper, the loadability limit can be 
determined after performing only three computations 
of power flow in complex form. Therefore, we find 
this technique suitable for online loadability 
assessment. The accuracy of the loadability limit 
determined using parabola approximation technique 
slightly depends on positions of those three points 
used for calculating the parabola coefficients, but it is 
quite satisfactory (typically the error is below 5%). 
The precision is higher when at least one point is 
situated close to the loadability limit point. 
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