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Abstract — Elaboration of the analytical algorithms for syn-
thesis of the state space controllers, in form of algebraic 
expressions, by the maximum stability degree criterion, that 
offers to the designed control systems an aperiodic step re-
sponse, high performance and good robustness is proposed 
in this paper. The elaborated algorithms represent simple 
analytical procedures with reduced volume of calculation 
and without any imposing conditions to the complexity of 
the control object.   

Keywords — control system; state space representation;  
synthesis of the state space controllers; analytical algo-
rithms; maximum stability degree; aperiodic step response 

I. INTRODUCTION 

State space representation has become the mathemati-
cal support in the systems theory and a source for a new 
series of approaches and modern methods for analysis 
and synthesis of control systems. This fact is due to the 
following issues: representation in the state space using 
the matrix calculations that are easy to implement on the 
computer; permits unitary treatment of the mono-variable 
and multi-variable systems, continuous and discrete sys-
tems, linear and nonlinear systems; it is used for synthesis 
of the controllers to the higher order objects etc. The state 
variables )](,),(),([)( 21 txtxtxtx n  are those variables 

that determine the future behavior of the system, when 
the initial state of the system and the inputs are known. 
For state space realization of the system it is need to be 
satisfied the condition of controllability and observability 
[1, 2, 5, 6]. 

Synthesis of the state space controller is started with 
determination of the characteristic polynomial )( pA of 

the control system state matrix A, imposing the poles 

(proper values) ]...,,,[ 21 n , that determine the desired 

dynamics of the design system, according to which is 

obtained the characteristic polynomial )( pc  of the sys-

tem matrix in the closed loop. For determination of the 
feedback vector’ components k (tuning parameters) is 
used the Ackermann relation [2, 5, 7] 
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controllability matrix. 

In case of presentation of the system in canonical con-
trollability form, calculation of the feedback vector’ 
components is reduced to use the following expressions  
[5, 6] 

)1(...,,0,  niqk iii  ,
              

(1,b) 

where iq  and i  represent the coefficients of character-

istic polynomials )( pc  and )( pA  respectively. 

Thus, using the feedback by the state is possible to 
modify all poles of the control system and, therefore, 
imposing the dynamic behavior according to the desired 
performance by choosing the proper values of the system 
matrix in the closed loop. The choosing of new proper 
values is a complex problem and using of classical meth-
ods of synthesis, for example, the dominant poles meth-
od, the  responses prototype method, the analytical design 
of controllers etc., for the control systems with high order 
is met difficulties that appears in case of correlation the 
poles of the system with the desired performance and 
energetic indices, required the graphic design, using  the 
computer and obtained the optimal parameters by these 
methods sometimes can not satisfy the condition of sta-
bility.  

In [3] is proposed a new synthesis method of the con-
troller in the state space by the maximum stability degree 
criterion (MSD), criterion that offers to the design sys-
tems the higher performance and better robustness [4]. 

The problem of synthesis the control system in the 
state space with maximum stability degree is formulated 
in the following way [3]. It is considered a structure of 
mono-variable control system with representation in the 
state space (Fig.1), that includes the control object with 
known parameters 
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and control algorithm 
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where A  is the state matrix with dimension )( nn ; x  - 

the vector of the state variables, )1( n ; u – the control 

value; b  - the vector of control values, )1( n ; c  - the 

vector of output values, )1( n ; k  - the vector of tuning 

parameters, )1( n ; n  -  the order of the system; y  - the 

output value. 

 

Fig. 1. The block scheme of a dynamic system in the state space. 

It is necessary to determine the components of the 
feedback vector (tuning parameters), so as to be satisfied 
the condition 

)...,,1(),(max nikJ i
ki

  ,           (4) 

where J  is the maximum stability degree;  -  the stabil-

ity degree of the system; ik  - the components of the tun-

ing parameters vector; n  -  the degree of the characteris-
tic polynomial of the control system. 

In conformity with method [3], it is introduced the no-
tion of the maximum stability degree J and using the sub-
stitution ki jJp  , the desired characteristic poly-

nomial )( pc  of the design system is obtained by the 

decomposition of the characteristic polynomial )( pA  of 

the A  matrix in n  linear factors 
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where l  is the number of conjugate pairs of complex 

roots; z  - the number of real roots; zln  2  - the de-
gree of the characteristic polynomial of the design control 
system; )1,...,0(),,(  niJfq kii  . 

The value of the maximum stability degree J of the 
designed control system is obtained from the following 
expression [3]  

n
J n 1


,                                    (6) 

where 1n  is a coefficient of the  characteristic polyno-

mial )( pA . 

The values of the tuning parameters ik  are determined 

in conformity with expressions (1, b). 
The practice of synthesis the controllers demonstrates, 

however, that for determination of the dynamic tuning 
parameters of the controller is more convenient to operate 
with the analytical expressions with a low volume of cal-

culations that dependent on the known parameters of con-
trol object. The analytical synthesis expressions, on the 
one hand have the advantage of decreasing the volume of 
calculation of tuning parameters (compared with the syn-
thesis  methods and algorithms that include a number of 
steps) and, by the other hand, using of the analytical ex-
pressions is a good alternative in case of the controllers 
with auto-tuning and in adaptive control, where the con-
troller retuning is done in function of the parameters vari-
ation of the control object during operation of the control 
system. 

Based on this consideration, in this paper is proposed 
to elaborate of the analytical algorithms of synthesis the 
state space controllers, in form of algebraic expressions, 
for control objects with arbitrary order inertia by the 
maximum stability degree criterion.    

II. ANALYTICAL ALGORITHMS FOR SYNTHESIS  
OF THE STATE SPACE CONTROLLERS  

If it is imposed the problem to design of the control 
system in the state space by the error, the solution of this 
problem depends on the structure of control system, 
where the control object can be with inertia and astatism. 

The transfer function of control object with inertia is 
given in the following form: 
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where k  is the transfer coefficient; naaa ...,,, 10  - the 

coefficients of the transfer function of control object, n  - 
the order of control object. For the control object with 

inertia and astatism we have the coefficient 0na . 

The standard controllable form of representation in the 

state space of the object (7), normalized by the 0a , is 
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where 
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To the model object with inertia and astatism in ex-

pression (8) we have 00  .  

For the control object with inertia and astatism the 
structural block scheme of the control system in the state 
space is represented in the Fig. 2 [2]. To amplify the error 
signal, in direct connection is included the proportional 

block 0k . The control algorithm is determined by the 

following expression  

    032121 ...)( kxxxkkktu
T

nn   .  (9) 

If at the entrance of the control system with object with 
inertia is applied the step signal, then to obtain the sta-
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tionary error null is necessary to add in the controller 
structure an integrator element, which increase the order 
of the designed system (Fig. 3) [2]. The control algo-
rithm, in this case, is determined by the following expres-
sion  

    02121 ...)( kxxxkkktu T
nn   .      (10) 

The characteristic polynomial of the state matrix of the 
control system (Fig. 2, 3) is presented: 
 for the objects with inertia and astatism (Fig. 2) 
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 for the object with inertia (Fig. 3) 
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The step response of control system will be aperiodic, 
if the imaginary parts of the characteristic polynomial 
roots are null. Therefore, in accordance with the method 
[3], it is introduced the notion of the maximum stability 
degree J  and considering the roots of the characteristic 

polynomial Jpi  , it forms the desired characteristic 

polynomial )( pc  by decomposing polynomial (11) in 

the linear factors: 
 for the model objects with inertia and astatism  
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where ),...,0(),,( niJcfq iii   and value of the maxi-

mum stability degree J of the design system is deter-
mined by the following expression  

n
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 for the model objects with inertia  

 

,...
...

)(

01
1

1
1

1

1
01

12
1

1
1

1

qpqpqpqpq
JcpJcpJc

JpcpcJpp

n
n

n
n

n
n

nnn
n

n
n

n
n

n
c


















   (12, b) 

where ))1(,...,0(),,(  niJcfq iii ; ),,( Jcfq iii   

),...,0( ni   and the value of stability degree is  

1
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From the characteristic polynomials )( pA  (11, a), 

)( pc  (12, a) and relations (13, a), (1, b) for the objects 

with inertia and astatism is obtained  
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A
  (11, b), )( pc  (12, b) and relations (13,b), 

 (1, b) for the model objects with inertia is obtained 

1
1


 

n
J n , )...,,1(,;/ 1000 niqkqk iii   . (14, b) 

Using the relations (14) the maximum stability degree 
J  and the tuning parameters ik  of the state space con-

troller can be calculated. 
The expressions (12, a, b) 

nn

n
n

n
n

n
n

n

JcpJc
pJcJpcpcJp

0
1

1

22
2

1
1 ...)(









   (15, a) 

  1
01

12
1

1
1

1 ...)(













nn

n
n

n
n

n
n

n

JcpJc
pJcJpcpcJp

  (15, b) 

represent the Newton binomial and their coefficients are 
calculated by the following expressions [8] 

 

Fig. 2. The structural block scheme of the control system for the object with inertia and astatism. 

 
 

Fig. 3. The structural block scheme of the control system for the object with inertia. 
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where for the (15, a) have i
ni cc   and for the (15, b) - 

i
ni cc 1 . 

Using the expressions (14)  and expression for calcula-
tion of the binomial coefficients (16) and taking into ac-
count the order of the closed loop system (for the control 
object with inertia and astatism is n, but for the control 
object with inertia is (n+1)), after some transformations 
were elaborated the analytical algorithms of synthesis the 
state space controllers, in form of algebraic expressions, 
for the control object with arbitrary order inertia n and 
with or without astatism for the control system with max-
imum stability degree and aperiodic step response. The 
elaborated algorithms are presented in the Tables I and II.  

TABLE I. 
 THE ANALYTICAL ALGORITHMS FOR SYNTHESIS  OF THE STATE SPACE 

CONTROLLERS TO THE OBJECTS WITH INERTIA AND ASTATISM  

No. The calculation expressions 
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Determination of the maximum stability degree  
and the coefficients of tuning parameters vector 
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TABLE II. 
 THE ANALYTICAL ALGORITHMS FOR SYNTHESIS  OF THE STATE SPACE 

CONTROLLERS TO THE OBJECTS WITH INERTIA  

No. The calculation expressions 
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Mathematical model in the vector-matrix form 
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Mathematical model  
in the vector-matrix form of the control system 
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Determination of the maximum stability degree  
and the coefficients of tuning parameters vector 
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III. APPLICATIONS AND COMPUTER SIMULATION 

Suppose that the controlled technological process is 
described by the model object with fourth order inertia 
with known parameters 
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where 6k , .1,5,7,5,17,15,4 43210  aaaaa  
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It is formulated the problem to synthesis of the control-
ler in the state space to the model object (17) and to de-
termine the vector of tuning parameters k.  
   It is obtained the normalized transfer function by the 0a   
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It is determined the vector-matrix equation in the 
standard controllable realization   
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The stationary error of the control system will be null 
if in the structure of controller is connected an integrator 
element (Fig. 3), which raises the order of the designed 
system and the above equation is transformed in the fol-
lowing form [2, 6] 
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It is obtained the characteristic polynomial of the Â  
matrix  

ppppp
pppppp

A

0
2

1
3

2
4

3
5

2345
ˆ 25,0875,1375,475,3)(





  

It is verified the condition of controllability of the  
system  

5]ˆˆ,ˆˆ,ˆˆ,ˆˆ,ˆ[ 432  bAbAbAbAbrangrangU . 

Because the rank of matrix U is equal with order of 
the system, then the system is controllable . 

In conformity with (10) the control algorithm is pre-
sented in the following form  
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The synthesis of controller by the maximum stability 
degree criterion is done based on analytical algorithms, 
presented in the Table II. 
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    The results of synthesis are given in the Table III. 
Using the method of dominant poles for the system 

with imposed indices of performance str 10%,5  , it 

is determined the dominates poles [2]: 
o 1%5   ; 

o 3,0
3

1010  n
n

r st 


,  

 where n  is a proper frequency; 

o in final is choice 3,02,1  domp , which allows 

to impose the other poles 15,4,3  . 

The characteristic polynomial of the designed control 
system is determined  
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Using the relation (14, b) is determined the vector of 

tuning parameters k , which values are presented in the 
Table III.  

To calculate the tuning parameters by the parametric 
optimization method was used the Matlab Simulink soft-
ware (the simulation structural block scheme of the con-
trol system in the state space is presented in the Fig. 4) 
and the obtained results are presented in the Table III. 

TABLE III. 
THE RESULTS OF SYNTHESIS THE CONTROLLER 

No. 
The syn-

thesis 
methods 

k0 k1 k2 k3 k4 

1 
Maximum  
stability  
degree 

J=0,75 

0,158 1,33 2,344 1,25 0 

2 
The domi-

nation poles 
0,06 0,62 1,195 0,515 -0,15 

3 
Parametrical 
optimization 

0,091 0,538 0,257 -0,962 -0,915 

 

 

 

 
Fig. 4. The simulation structural block scheme  

of the control system in the state space.   
 

The step responses of the designed control system are 
presented in the Fig. 5 and the performance are given in 
the Table IV ( %5st  from yst). The numbering of 

curves correspond to the numbering of the methods in the 
Table III. 
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Fig.5. The step responses of the designed control system. 

TABLE IV. 
THE PERFORMANCE OF THE DESIGNED CONTROL SYSTEM 

No. 
The synthesis 

method 
The performance of control system  
tc, s tr, s σ, % λ ψ 

1 
Maximum  

stability degree 
8,95 12,2 - - - 

2 
The domination 

poles 
15 19,2 - - - 

3 
Parametrical  
optimization 

5,6 12,6 5,5 1 1 

IV. CONCLUSIONS 

1. Based on the theoretical investigations were devel-
oped the analytical algorithms for synthesis of the state 
space controllers, in form of algebraic expressions, for 
designing the control systems by the maximum stability 
degree criterion. 

2. The elaborated algorithms represent the simple ana-
lytical procedures with a low volume of calculations, that 
not impose the restrictions on the complexity of control 
objects and can be applied for different types of objects: 
with inertia of arbitrary order; inertia and astatism; inertia 

and time delay; inertia, astatism and time delay. 
3. Application of elaborated analytical algorithms sim-

plify the synthesis procedure of the state space control-
lers, which provides the necessary conditions for imple-
mentation the control systems with auto-tuning and adap-
tive control, and enable the development of computer-
aided design of control systems. 

4. Analyzing the performance of the designed control 
system by the proposed analytical algorithms for synthe-
sis of the state space controller, in comparison with par-
ametrical optimization and dominant poles methods, was 
noticed that elaborated algorithms offers to the designed 
control systems the aperiodic step response, higher per-
formance and better robustness.  
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