S1-1.1 ## Sensing Properties of Ultra-Thin TiO₂ Nanostructured Films Based Sensors V. Postica¹, T. Reimer ^{2,3,*}, E. Lazari¹, N. Ababii¹, S. Shishiyanu¹, S. Railean¹, V. Kaidas³, S. Kaps³, O. Lupan^{1,3}, W. Benecke² and R. Adelung³ In this work, ultra-thin TiO_2 nanostructured films, synthesized by atomic layer deposition method (ALD), were integrated in sensor structures. The effect of post-growth annealing and thickness of TiO_2 samples on UV and hydrogen gas sensing properties is investigated. An increase in current value of more than one order of magnitude ($I_{UVON}/I_{UVOFF}\sim38$) has been detected under exposure to UV light (365 nm) of sample with 45 nm thickness and annealed in furnace at 650 °C for 2 hours. Samples with 15 nm thickness and rapid thermal annealed at 450 °C for 3 min, have shown hydrogen gas response (~3.75). ¹Technical University of Moldova, Chisinau, Republic of Moldova ²Fraunhofer Institute for Silicon Technologies (ISIT), Itzehoe, Germany ³University of Kiel/Institute for Materials Science/Functional Nanomaterials, Kiel, Germany