

S1-2.3

Electrical and Photoelectrical Properties of Zn_{1-x}Mg_xO Thin Films Obtained by Spin Coating and Aerosol Deposition Method

V. Morari¹, V. Postolache², G. Mihai⁴, E. Rusu¹, Ed. Monaico², V.V. Ursachi¹, K. Nielsch³, and I.M. Tiginyanu^{1,2}

¹Institute of Electronic Engineering and Nanotechnologies "D. Ghitu", Chisinau, Moldova ²National Center for Materials Study and Testing, Technical University of Moldova, Chisinau ³Leibniz Institute for Solid State and Materials Research (IFW Dresden), Institute for Metallic Materials (IMW), Dresden, Germany ⁴Control for Surface Science and NanoTechnology, University Politchnice of Pucharect

⁴Center for Surface Science and NanoTechnology, University Politehnica of Bucharest

 $Zn_{1-x}Mg_xO$ thin films were prepared by aerosol deposition and spin-coating method, using zinc acetate and magnesium acetate as precursors. The obtained films were investigated by scanning electron microscopy (SEM), electrical and photoelectrical characterization. SEM and energy dispersive x-ray (EDX) analysis has shown that the produced thin films are homogeneous in morphology and composition. The relaxation of photoconductivity under UV illumination was investigated in vacuum as a function of temperature. It was found that the thin films produced by spin-coating exhibit much higher photosensitivity and long duration relaxation of photoconductivity, in contrast to the films obtained by aerosol deposition. The investigation of photosensitivity in a wider spectral range demonstrated that the films are also sensitive to the visible and infrared irradiation.