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Abstract

The twofold degenerate Anderson impurity model [1-4] is investigated in normal and
superconducting states, and the strong electronic correlations of d-electrons of impurity ion are
taken into account by elaborating a suitable diagram technique. We discuss the properties of the
Slater—Kanamori model [2-4] of d-impurity electrons. After finding the eigenfunctions and
eigenvalues of all 16 local states, we determine the local one-particle propagator. Then we
construct the perturbation theory around the atomic limit of the impurity ion and obtain the
Dyson type equations between impurity electron propagators and normal and anomalous
correlation functions. By summing infinite series of ladder diagrams, the approximation for
correlation functions is established. The criterion for appearance of a superconducting state of the
model is discussed.

1. Introduction

The theory of strongly correlated electron systems plays a central role in contemporary
condensed matter physics. The essence of the problem is the competition between the localization
tendency originated by the Coulomb repulsion of d electrons and itinerancy tendency arising
from the hybridization of electron orbitals.

The orbital degeneracy can be completely eliminated in solid substances, but in many of
them, for example, new superconductors based on Fe and AnC,, materials, orbital degeneracy is
not completely eliminated and orbital effects are important.

Many materials with open d- or f- shells exhibit metal-insulator transitions of
Mott—Hubbard type due to strong electron—electron correlations.

Major progress in understanding the physics of the Mott—Hubbard metal—insulator
transition has been achieved in the last decade through the development of the dynamical mean-
field theory (DMFT) [5]. In the last-mentioned paper, the study of Mott-Hubbard transition is
realized within the DMFT at T = 0 using Wilson’s Numerical Renormalization Group.

The role of the Hund’s rule coupling |, has been investigated in models of magnetic

impurities and quantum dots [6]. This has lead to different predictions for the behavior of the
Kondo temperature in these systems as a function of 1. This issue is investigated by applying a

combination of numerical renormalization group (NRG) and renormalized perturbation theory
(RPT) to some of different models.
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In [7, 8] the phase diagram of the Anderson impurity model (AIM) has been studied by
employing the Wilson’s NRG method. It has been shown that the physical behavior in the
vicinity of the nontrivial fixed point of the AIM resembles that of the two-impurity Kondo model.
This fixed point is reached in the immediate vicinity of the metal-to-insulator transition upon
variation of the Hund parameter.

It is well known that orbital degeneracy plays an essential role in the Mott metal—insulator
transition. In the present work, we study the role of Hund rule coupling in the orbital degenerate
model using a diagrammatic approach and taking into account the intra-atomic Coulomb
interactions of two electrons with opposite spins occupying the same or different orbitals on
equal footing with the intra-atomic exchange.

The investigation is based on the diagram theory for strongly correlated electron systems
we have earlier developed for the non-degenerated [9-17] and twofold degenerate [18] models.

Our approximation includes only local self-energy terms. It is well known that such
approximation is well justified for a large coordination number. The nonlocal [19] terms
neglected here correspond to higher order approximation in inverse coordination number.

The paper has the following structure. In Section 1 we describe the twofold degenerate
Anderson impurity model. The local properties of the model are considered in Section 2. The
perturbation theory around the atomic limit of impurity ion is formulated in Section 3. In this
section, we discuss the process of delocalization and renormalization of the dynamical quantities.
In Section 4 the simplest irreducible Green’s function is calculated. In Section 5 the analysis of
the main equations is discussed. In Section 6 the main equations for the superconducting state are

formulated and necessary approximations are elaborated. The correlation functions Y ,\7 is

determined in both cases when triplet or singlet superconductivity is realized. In Section 7 the
conditions that determine the critical temperature are analyzed, and the last Section 8 contains the
conclusions.

The Hamiltonian of the two-fold degenerate AIM includes two components: conduction
electrons and strongly correlated localized electrons on one side and the term describing their
hybridization on the other side [1-4]:

H=H+H.,, &)

HO = HO 4+ H, @)

HC = ;g, (k)C; C.. (3)
Hy =Y &% d, +UD> n.n, +Unn,+1,>d/ d; d, d,.

E i 4

1, (dzdzd,,d, + H.C), “

H,. =%é(\/ﬂd; C. +V.C: d,), (5)

where the local Hamiltonian H} is standard in the Slater—Kanamori [2-4] form, C,. is the

conduction electron annihilation operator with momentum k , orbital number 1 =1, 2 and spin
o =+1(1,]), d,, operator for localized d electron. Conduction electron of I-th orbital state
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hybridizes only with the local electron of the same orbital state, n, =d;d, , n=>n_, V,is

matrix element of hybridization. U is the Coulomb repulsion between the d-electrons in the same
orbital state; U’, between electrons in different orbital states. I,, is the Hund’s rule coupling
constant and pair hopping terms, ¢, (R) is the band dispersion and &° is the impurity ion energy

evaluated from the chemical potential p. N is the number of lattice sites.
In the following, we assume that the symmetry of the system is such that there exists the
relation [20]:

u'=u-21,, 1, =1, (6)

The Coulomb interactions are far too large to be treated as perturbation and they must be

included in H® - zero order Hamiltonian. The hybridization term (5) is considered as the
perturbation of the system. In the following, the main ideas of the perturbation theory elaborated
for non-degenerate strongly correlated systems are extended to the case of orbital degeneracy.
This generalization has been discussed, e.g., for the twofold degenerate Hubbard model [14]. As
is known, the new elements of this perturbation theory of strongly correlated systems are the
irreducible correlation functions which contain all charge, spin, and pairing quantum fluctuations.

2. Local properties

In the main approximation of the Anderson model, one has free conduction and strongly
interacting localized electrons described by the Hamiltonian H®. The localized part of the

Hamiltonian, H, , can be diagonalized by using Hubbard transfer operators xmn:|m>(n| where

Im) is the eigenvector of operator H; [9].

Because orbital quantum number takes two values | = 1, 2, the total number of local
quantum states is 16.

There are the following eigenvectors of operator H . The first quantum state |1) is the

vacuum state |0) with energy E1:0. There are four one-particle states with spin S :% and

S, =%

|2>=d}, |0), |3)=d,, |0), |[4)=d,; |0) and |5)=d,, |0). The energies of all these states are
E,=E,=E,=E; =¢,.

Then there are six states with two particles. Three of them are singlet states with spin S=0 and
others 3 triplet states with S=1and S, =-101,

N |-

1 g+ + A+ 1 tdt o Iy ‘1 2d, L dy
|6>:\/§(d1Td1¢_d2Td2¢)|o>’ |7>:E(dﬁd1¢+d2?d2¢)|o>’ |8>: z(led2¢_d1¢d2T)|0>’
+ 4 1 + + + + + +
9)=d}:d;; [0), 110) :E(dnda +d,,d;.)10), 112 =d;;d;, [0).

The eigenvalues of these quantum states are
Ec=2¢,+U -1}, E, =2¢, +U +1],,
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Eg =2¢,+U'+1,, E,=E,,=E,; =2¢,+U"'—1,
Then there are four states composed from three particles
112) = d;d; d;; 10), 113) = d;.d; dy: 10),
|14) =d;;d;yd;, [0), 115) = d;d;,d)} |0)
with energy valueE, =E,=E,=E =3¢, +U+2U"' -1,
The last local state is singlet
|16) =d;:d;;d;.d;, | O) with energy value E,; =4e, +2U +4U"-21,,
When equalities (6) take place we obtain more simple forms:
E,=E=2¢,+U-1,, E =2¢,+U+Il,, E=2¢+U-3l,, E,=3¢+3U-5l,,
E, =4¢, +6U -101,
The triplet states |9), |10) and |11) are the lowest in energy.

Quantum states enumerated above permit us to organize Hubbard transfer operators ™
and establish the relation with fermions’ impurity operators [14]:

d+ — 2+I—a,l+ (_1)I+lZG,2+I+cr+Z7,2+I+a]+i

zl ks
+%[_le+l—a,8+G(_l)|+1;(12+|—a,10} \/_[( 1) 15-1-06 ;(154—5,7} ©)

+( 1)I+1 10-0,5-1-0 +(—1)|+10'}(12+|+0’1O+U +GZIG,15 I+a.

8,5— I+a+( 1)I+l 10,5- I+o-]

Equation (7) allows calculating all the local dynamical quantities. For example, quantum electron
number has the form:

+l-0,2+l-0 1 + +
n|g=ZZI 2+ +§D{6'6+(_1)| 1Z6,7+( 1)| 17(76+Z

1 + +. o,l0-o
2[1884_0_( 1)| 1 81O+U( 1)| 1 108 1010]+}(10 10 (8)
n ZlZ+|—o‘,12+|—o’ n ZlZ+|+o‘,12+|+o‘ n 115470,15470 n /1/16,16
and
an _nli _ Zl+|,1+l . Z3+|,3+| 4 (_1)|+1[ ZS,lO 4 Zlo,s:l 4 Zg,g . Zn,n i ZM_I'M_I _ ll6—|,16—ll (9)

For t dependent quantity A(z) =e"™ Ae "™, we have the equation

an(T) _nw(r) _ Zl+|,1+| _Zs+|,3+| + (_1)I+1[ZS,lOer(E8—E10) + ZlO,Ser(Em—Eg)]

9,9 11,11 14-1,14-1 16-1,16-1
— Z .

LA A 4

The correlation between quantities with different orbital numbers is determined by the equation
(1=1,2):

(nn(f) _ nu(f))(nm (0) -n, (0)) — 5"’ ':Zl+l,l+l + Zs+|,3+| + Zl4—|,14—| + Zle—l,le—l }

(- 1)|+| [ 87(Ea—Eu) | Zlo,loer(Emea)]_FZ +lell

(10)

(11)
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3 (0 (0) =, (D)0, (0)—1,, (0)) = Zi(eﬂEz eI 12675 (12)

In special case | =1, I'=2, we have

(nﬁ (T) _ nu (T))(nzT (O) _ n2¢ (0)) — _|:ZB,8eT(E3*E10) + llO,lOeT(Ew—E E):| + 19,9 + le,ll’ (13)

which is the d electron susceptibility [2—4].
We now define the Matsubara one-particle Green’s function of localized d-electrons:

g°(lotl'ot) =g .(r—7) = —<Td|a(f)ava'(7’)>o ) (14)

where
d,(7) = e””°d|;e"H° , d,(7)= e’”f’dlae‘THO .

The Fourier components of this Green’s function are

G,(0) = %Ze‘“’nfgoawn). (15)

Using (8) and the properties of Hubbard operators we obtain the equation for local function:

) (ia) ) _ é’”’é'ao_’ e_ﬂE:L +e_ﬁE2 N e_ﬂEz +e’ﬁE6

ez i, +E —E, im, +E, —E,
1 e—ﬂEz + e—ﬁE7 3 e—ﬂEz + e—ﬂEg e‘ﬁEe + e—ﬂEu
2imw,+E,-E, 2iw,+E,-E, 1w, +E;—E,
1 e‘ﬁE7 + e—ﬁEu 3 e—ﬁEg + e—ﬂEm e—ﬂEu + e—ﬂEm }
—- +—- + - :
2iw,+E,-E, 2iw,+E,—-E, o, +E,-E}

(16)

where Z, is partition function in atomic limit

Zy=e"5 +4e7% 126775 1o /5 + 36775 1 4e7 B2 4 e, 17)

The spectral function of impurity d-electron in local approximation is as follows:
AP (E)=-2Img°(E +io) (18)

where g°(E +i8) with 5=+0 is the analytical continuation of the Matsubara to retarded Green’s

function.
Using (14) we obtain
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A9(E) = 22—”{(e-/’51 +e7)S(E+E,—E,) + (e +e”%)S(E + E, - E,)

0

+%(e"3Ez +e)5(E+E,-E,) jtg(e‘ﬁE2 +e7%)5(E+E,-E,)

(19)
+e % +e7"5)S(E + Eg - Eyp) +%(e-ﬁEv +e”)S(E+E, —E,)
+g(e-/’59 +e)S(E+E, —E,)+ (e +e)5(E+E, -E,),
with property
f A (E)dE = 27. (20)

3. Delocalization processes

We use the perturbation theory elaborated previously for strongly correlated electron
systems both of non degenerate [9-13, 15-18] and of degenerate forms [14]. We study the
process of renormalization of Green’s function resulting from intra- and inter-orbital flips of
tunneling electrons.

The full Matsubara Green’s function in the interaction representation for conduction and
impurity electrons are

G(Klor [K1'0') =—(TC,_(r)C, . (z)(B)). o
gllor|l'o’r’) == (Td, (), () (B)). .
The anomalous functions are defined as
F(Kior |[K1'0'c) = —(TC,._(£)Cy, (W (B)):
F(Klor |KT'e’r) =—(TC,_(2)Cpy,.(zU(B)). 22)

f(lor|l'c't) = —(Td,a(r)d,,a,(r’)u (,B)>;
fllor [Io'r) = —(Td,,(2)d,.. () (B)). .

Here T and 7’ stand for imaginary time with 0<t<p, B is the inverse temperature, T is the
chronological ordering operator.
The evolution operator is

B
U(B) =T exp(~[ H,, ()d7). (23)

The statistical averaging is carried out in (21) and (22) with respect to the zero-order
density matrix of the conduction and impurity electrons. Index ¢ means connected diagrams.
In the zero order approximation we have

16 16
H(;_:ZEnZnn’ Z}(nn:]-,
n=1

n=1
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GO (Kk'|7—7) =65.6,0,, G2k |r-7),, (24)
(0)(k ||CO )_ _lg(k) a)n — (2n;1)72' ’

and g (im, ) is determined by equation (16).
Hybridization between the conduction and d impurity electrons results in renormalization
of their propagators. Because the number of conduction electrons N is much larger than the single

impurity state, the effect of the latter on the conduction band scales as % :
The renormalized conduction electron propagator is

(KK' [i@,) = 66,5, GO (K |iw,)

|o‘| o'
- N | N (25)
+ GO (K [i0) G (1)GOK i),

where g, ,..(im,) isthe full impurity electron propagator.
A similar equation holds for the anomalous function of conduction electrons in
superconducting state:

5.V

(K, —K' |ie,) = 2 GO i@ ) T, .. (io, )G (-K' | -ic,).

Io'l o' lol'c

The equations for the full functions g and f of impurity electrons have the diagrammatical form

shown in Fig.1.
The structure representative of the diagrams in Fig. 1 is given by the following equation
G(O)

~ 1
%%MGE%'ZO’:( 1k2 | Ia)”) - _Zr\/ku Loy (k | \@, )é‘lﬂz 0107 (26)

é‘I 11, Glo'ZGIEO)l (|(0 )

where

O i) =— Z[\/k,\c;w’(kua))_ Z% (27)
The renormalization quantity is

G (10,) =— Zvv Gy (KK [ic,). (28)

In Fig. 1, the double dashed lines with arrows depict renormalized g and f propagators of
localized electrons and solid thin lines represent ¢° function of conduction electrons. The
function V, means V. and summation by repeated indices is assumed.

A and Y are correlation functions. They contain a sum of strongly connected irreducible
diagrams. The simplest examples of these diagrams are shown in Fig. 2.
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Fig. 1. Dyson type equation for Green’s function of impurity electrons. A, Y, Y are
correlation functions.

Vi /7N Vs
1| = ]2

-1 Gg’”’ [loT, lio171|l209m2, o' TGO [521202T2 |Elllal7'l]

g e
loT lo'r!

Vi ™
2

I| = =4

GgO)ir [l{ﬁ'ﬂ']‘, l20‘2’7’2|l5’7’, lIO'/T']F_(O) [—l_c»;‘l;ﬁ;ﬂ |E2l20'27’2]

=

o—p <o
o't loT

Fig. 2. Simplest examples of correlation functions A and Y.

The analytical form of equations in Fig.1 is the following:
oo (10,) = A, (100,) + Ao, (ia)n)gl(lg)l (ia)n)gllo'll'o’(ia)n) (29)

Vo, (12, )gl(l?r)l (-ie,) f_llall o (1,),
Foror (10 =Yy (i) + A,y (<i19)60 (-i0,) T (i)
+Y_|°_|1°'l (I a)n )g|(1?7)1 (I a)n )gllcrll ‘o' (Imn ) .

This system of equations is rather general and admits different phases. We shall discuss one of
the most simple forms with singlet superconductivity on the paramagnetic background.
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For this special case, we use the new notations (o =-o):
G (0)=6,,G5 (i), Ty (i) =0, T1 (i),
Ao (i0,) = 8, A (i0,), Y1 (i0,) = 6, (ic0,), (30)
9O (iw,) =g (im,).
With these definitions, we obtain:
g, (i) = A (i) + AL (i0,)G2 " (10,) g2 (i0,) =Y 2 (i0,) G2 (H,) T35 (i),
T (i) =V (i) + AY (i, ) GEO (-i,) T2 (iw,) + V2 (0, ) G4 (i, ) 9 (iew,).  (31)
In the absence of orbital degeneracy, this system of equation has the known solution [18]:

Ag(ia)n) + g<(70) (_ia)n) [Ag(iwn)AE (_ia)n) +Yc&(ia)n )Y_&g(ia)n)]

g.(a) = d_(im)
- . Y_(iw) : Y (i)
f_ =g Nz _ =-oo N7 32
8= a1 = ) (32)
d,(io,) = (1- A, (i0,)6"(i@,) ) (1- A, (-i0,)6 (-im,))
+gc(rO)(ia)n)gc(?O)(_iwn)Yo—E(ia)n)Y_Ea(ia)n)'
Solutions of equation (31) for the normal state of the degenerate system have the form:
gcl,—l(iwn) — A?(Iwn) + gi(o) (_Ia)n)I:A]j-((jla)n)Afrz(la)n) + Af(la)n)/\il(la)n):l ”
U(Ia)n)
21 % d (i =(1-cY9j A 1— 2O (j A2 (i
S~ Ao do(ie) ( G (i,) .C,(nwn))_( G _(nwn) 2(ic,)) )
d, (i) -G (i0,)G2 (0, ) AZ (9, ) A% (i), ).

The other two functions are obtained by changing the indexes 1<»> 2. These equations are
of Dyson type. They determine Green’s functions through correlation functions A=g® +2,Y
and Y ones. The last three can only be given in a form of infinite diagram series, since an exact

solution does not exist.
An example of efficient summation of diagram and determination of the correlation

functions Z, Yand Y is presented in Fig. 3.

The diagrams of Fig. 3 differ from the ones of Fig. 2 by the presence of the full conduction
electron Green’s function instead of the bare one of Fig. 2. This difference is the result of ladder
summation of main diagrams.
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Vi N\ V2

hom [M_ | koer
Ztlrl;; (T - Tl) =—1 Ggo)ir[lm', llO'lTlllgG'sz, ZIG"T']‘/;G[]_{J'glesz|E]‘ll0'17'l]v'2
loT le'r

Vi N\ Vs

lioym “-» <_U laoams
Yig(r—1)=-% Ggo)ir[ltﬂ', V5’7" |lyo171, laoama|ViF [kiioymi| — kalagams]Va
[ R —
Ul'g'r oT

Vi N\ V2
| F—)

lioim laooTy
Y#Z' (r—1)= _% Ggo)ir[le_flﬁ, lyoan|laT, llG'T']V;F[_Elll&lTl|E2l20'27'2]‘/2*
Ll T
loT l'g't

Fig. 3. The main approximation for the correlation functions. The solid double lines with arrows depict the
full Green’s functions of conduction electrons. The rectangles depict the irreducible Green’s functions of
the impurity electrons.

4. Correlation functions

The main approximation is based on calculation of simplest normal and anomalous
correlation functions in order to establish its dependence on spin and orbital quantum numbers.

The simplest correlation function is determined as
G;'[L213,4]1=9,"(1.213,4) - g (114 g (2]3) + g (11 3) g (2| 4),,
g°(1,2|13,4) =(Tdd,dd,) , ) =-(Tdd,) , 1=(,0,7), (34)

with two- and one-particle bare Green’s functions of localized electrons.

Owing to the presence of Coulomb interaction terms in zero order Hamiltonian, the r.h.s.
of equation (34) does not vanish and contains charge, spin, and pairing fluctuations.

The two-particle Green’s function g{” is the sum of 4! terms of different time ordered
electron operators products. The statistical averages of these quantities are calculated by using

Hubbard transfer operator’s representation.
We need the Fourier representation of these functions

208



V. A. Moskalenko, L. A. Dohotaru, D. F. Digor, and I. D Cebotari

irr . . —
G, '[Loyr; 1 0,1, | oy ,ou7,] =

1 i . . ) . I
=— G, [lojiw;l,o,im, | Lo ,0,im, ] o ion
ﬁ [21212:12))

1 H —iwy (1,7
1(0)(|10171 |,0,7,) = Ezgl(m(llal; l,o, liy)e e (35)

@

1) 1 1
O (loy;1,0, |i m(iay) = 2100 + :
9. (lo;; 1,0, |im) = 11, %0,0, (i) = 2 o +E,—E; iw+E,—E

irr HP H HP H _
G, [l oiiw; 0,0, | Lo ol ,0ie] =

= g oo, 0w, |oim)0in,]- (0, + v, — v, — ®,)

. . (36)
[ﬂé‘(a)l - a)4) gl(O)(Ilal; |4O-4 | Ia)l)gl(O)(IZGZ; |3O—3 | 'a)z)
—po(w, - w3)gl(0)(llal; .o, i) g1(0)(|20-2; l,o, | ia’z)]
There exists the law of frequency conservation
G, [Lojiw;oiw, |lojo;)oin]= 37)

= fS(a, + @, — 0, — 0,)G) [Lojim; Lo im, |Loio;),cio,).

The statistical averages of chronologically ordered products of the electron operators of
,ﬁEn
the function g{” have different weights of the form

, Where E, are the energies
0

determined in the previous section. Because E, is the lowest in energy, its weight e is

dominant over the others and therefore only these terms are taken into account.
Motivated by these arguments, we use the approximate value (35) instead of initial exact

equation (16) for zero order Green’s function g% .. Zero order partition function Z, (17) is
approximated as 3e ™™ .

For example, the contribution to function g{”[l,cjie;;l,0,iw, |l,05im,;l,0,im,] with time
order B>1,>7,>17,> 14 >0 and with weight e is

|1|3 |2 Iy ( 0103 0'20'4 + 50'1,—0'3 50'2 =0y 50'20'3 + 50'10'3 50'20'4 50'10'4 50'20'3 ) Iil(;)24
lp+ly 1 1 (2)
_(534143,0534244,0 +(-1) 5|1|35|2|4 )(Z 0,0, 45010350254 + B 551,703552,754 55104) 1323 (38)
I+, 1 1 3)
(-1 53—|1 15,0 53—|2—|4,0)(Z 0-1‘745010350204 5 501, 0,9%5,.-0, 0104) | 5a

where

| (€]

_ﬂEg ﬂ Tl T3 TZ - - . )
o = Z IO drljdz.sj‘dz.zJ'dZ.4e(ngE12)(rl+rrr3ff4)elaarﬁlwzrrlwsrrlwm’
0 0 0

0
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e—ﬂEg B n 73 7
19,22 [/ i e drgte e g, ()
0 0 0 0

-pPEy n 73 2
Yij . . . .
19; == [ dry[dr, [ do, [ dr,e® B G Baa gt oo,
ZO 0 0 0 0
These fourfold multiple integrals by time variable t can be transformed in contour integral
by using the method of Claude Bloch [21]. With this purpose, it is necessary to introduce the
exponential form

e(ﬁ*ﬁ)EoJr(TrTa) Ei+(z3—72) Ep +(7p—74) Eg+(73-0) E, . (40)

which must be compared with the exponential form of our integrals 1£).. Comparison with 1%
give us the result

E,=-E,, E,=—E,+iw —iw,, E,=-E, +iQ, E =-E, +ia,
E,=-E, +io +iw,—io,, Q=0 +0,—0,-o, (41)
Our integral 1% is transformed in the contour integral

o_ 11 dze ”*
271 2, 2 (2+E)(z+E)(z+E,)(z+E,)(z+E,)’

(42)

0ct
where contour C* surrounds the real axis in the positive direction. The integrals 1® and 1®
have the same form (42) but differ in the definition of energy E,. For 1 the energy
E, =—E, +im —iw, and for 1, E, =—E, +i@, —icw,. Other parameters coincide.

The contour integral (42) is evaluated by the method of residues. The simple results are

obtained when the parameters E, are different. The existence of multiple poles is possible for the
special values of frequencies w, .

For example, in the case where @, —w, =0 and Q=0, we have E, =E, =E, and the pole
z =—E, is threefold multiple with the residue

1( e _} (43)
2\ (z+E)(z+E) E

To find all possible multiple poles, we consider different values of frequencies using the
identity 1=8(w)+y(®), where y(m)=1-6(w). For example, we consider the possibility when Q can
be equal to zero and ®1=0a. We have the identity

1=(5(Q) +y (Q)(S( — w3) +y (0, — @)
=0(Q)d (0, — ;) + 6 (Qy (@, — @) +y ()0 (0, — @) +w (Qy (@, — w,)

(44)
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The first term in the right-hand part of this equation admits the existence of a triple pole; the next
two terms admit double poles, and last term admits double and single poles.

-BZy
We shall take into account these residues, statistical weights of which is , and shall
0
omit the other ones. In this approximation, we have
zZ 19 ——5 0)o(w, -
071324 (©@)o(a w3)((z+E)(z+E)j
_ i o

+0(Q - — — —

Qo ~ ) ((z TE )(z TE,)(z+E )j (2+E)(1+E)z+Ey) ) .

5 _ e -

+ - Q — — —

(&= @)y () (z+E )(z +E)(z+E,) ), (z +E)(z+E)(z+E) ), .

e /? '
- Q)o(w, - — — —
+y (o, — )y (Q)6(w, — w,) ((Z TE)Z+E)z+ Es)J Z
e /” ’

+ — — — +w(Q2 - -

CrEV(rENrE)). . v (Qy (0, —a3)y (0, — o,) X
\Eomeere). . camteers)

(z+E)(z+E,)(z+E,)(z+E,) e (2 E)(z+E)(z+E)(z+E) ), .
(45)

!

e/
+((z TE)Z+E)Z+E)(z+ Es)J .

The contribution of other poles is negligible. Our next approximation consists in
preserving, in the case of a low temperature, of the main part of the second derivative (43) just of
the form

-BEy
__ _pe (46)
ZZO(El - Eo)(Es - Eo)
This contribution, together with contribution (36) of the product of one-particle Green’s
functions, determines the main part of the correlation function. This part is designed as G{*"" .

After some transformation and summation of different contributions, we obtain the main
approximation for the correlation function:
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G [Loiw; L0y, | Lo ,0oio,] = §5(a)1 +, =0, — 0,) p(iey) pliw,)
X(ﬂ5(a)1 CO4) I, I AR [250' -0y 02 0'350'20'4 + 50'10'35010'45020'3 50'10'45020'3503 0'1] (47)

_ﬂg(a)l a)3) ll3 |2|4 [250' —03 02 -0y 50'2 + 50' 1073 5(720'4 50'104 50'103 50204 50'4‘—0'1 ])’

with

. 1 1
p('w):(im E,—E, io+ E9—E12] (48)

5. Analysis of the main equations

As noted above, one example of efficient summation of diagrams which determine correlation
function Z and A is presented in Fig. 4. It has the form

. Vi o __V
‘/L /)-\ ‘/2 4 - ; - 13
L 2
L 2
A(z|7") -—-- < - - - -1 i -1 Gi
- < < <
! T !

(S

Fig. 4. The main equation for the function A(x|x ). Here x is (l,0,i®). The thin dashed line
represents the bare local one-particle Green’s function and the double dashed the
renormalized one. The thin solid line represents the conduction propagator.

First of all, we shall discuss the approximation with zero order correlation function G{”""
Using the result (47), we obtain

ZZG(O)W[IGM) Lojia |l ojiw;l'c 'Ia)]g(O) (im) = ;500'5“'[p(ia))]zgl(a())(ia))i (49)

@ hoy

Z Gé())irr[lo'iax Loy |l,0500;] ’O-'iw]gl(;)z (ia)l)glzazllo'l (ia)l)GI(lg-)l(ia)l)

Loylyo,

=—p(lw)p(lw1){ﬂ5(w 60)5||Z(255 Gy (i)

XG0, - ('a’l)gl(O) (i) + 50'0'9|(1g) ('a)l)gwla (Ia)l)GI(:T) (o) (50)
_5wg|(10) ('@)gl1 —oly~ (le)gw) (i)

—p5(0-0)[26,,G,",(0) G, o1 . (10)G”, (i)

+6,0 Gl (1) G, (10)G12 (101) =6, G (14) G 1 (103) G (i)}

We keep the terms that preserve the spin and have the form J_,and omit the terms with spin-flip
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of the form o, __ and also omit the terms that are reciprocally subtracted and differ only by the
sign of spin. We take into account that the function G (iw) does not depend on spin index and

Zalagl(aol) (iw) =0. (51)

As a result of these simplifications, we obtain

Z Géomr[lo'ia); Loiia, | |20'2ia)2;|'o"ia)]gl(:22 (iaﬁ)glzazllal(iwl)glg (@)

hoyl,0,

52)
=2 P30 @)P(i0)P(i1)3,, G2 (12) G, (0) 1),
Aoy (10) = 6,6, [m; (10) + P ( )gI(O)(I w)]+ P ( )gl(O)(Ia))gl(O)(la))glala (i), (53)
with the following realizations
Atio) =m,10)+ 20D 601+ 28D 160 o g, ),
M) =m,(i0) + 8D 60 1)+ D160 o g, i, 54

1(0) (i) GQO) (i) gy, (iw),

Ay, (iw) = @

We take into account the Dyson type equation
Ay (i) - gém (ia))(An(ig))_Azz (iw) = Ay (iw)A, (i) . g, (io) = Ay, (la)) ,
(iw) d(iw)
d(io) = (- Ay, (i0)G” (@)L A, (i0) G (1)) — G (i) G5 (i) Ay, (i) Ay (i@)). . (55)

We make some generalization by considering function m(im) dependent on orbital quantum
number | even if it is really not. The function g,, is obtained from equation (55) by changing
indices 1 and 2.

gn(iw)=

We have found two solutions of equations (54) and (55).
The first of them is
1

Ay (iw)=m(iw), g,(iw)= _Wl

. 1 . 1 m, (ia))géo)(ia)) -1
Ap(i0) =—G—, Gy(iw) = 0 T+ : (56)
Gé )(la)) ( )(la)) Y (le) (géo) (ia)))2
ip(io) . i2

. . 1
Ay (i) = A, (i) = i?a Gp(iw) =1 0(i0)G (i) (i) ,
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with the condition that

1
1 (i)

m, (@) = m, (@) - (57)

1
) (i)
The second solution is obtained from (56) by changing indices 1 and 2.

The analytical continuation of obtained solutions in upper half-plane gives us the
possibility to determine spectral function of localized electrons:

pr(E)=-2Img,.(E+i5) (58)
For example, the intra-orbital contribution has the form
2ImG? (E +i6)

Re(g”)’ +Im(G%) ©

pu(E)=

where
IMmG® (E +i8) = -0, (E) |V, (60)

The quantity p,,(E) differs from zero owing to the existence of the matrix element of
hybridization and of the zero order density of states p,(E) . This intra-orbital contribution to the

impurity states transferred to the Fermi level due to hybridization with band electrons is a direct
extension of the result known for the single orbital model.

However, there exists an additional contribution to this transfer caused by inter-orbital
correlation effect, which follows from our solution:

2(E + AE,)(AE, - E)
ImG*(0) Img;” (0)(AE, + AE,)’

pp(E)==Img,(E+id) = (61)

where
AE =E,-E,>0, AE,=E,-E;, >0.
This quantity is positive for —AE, < E <AE,.

Thus, for these energy values, the inter-orbital excitations give a positive contribution to the
metallic state.

6. Superconducting state
We shall discuss now the generalization of our previous theory for the case of
superconductivity.

Because the orbital quantum number | takes, in our model, two values | = 1, 2, we can
rewrite equation (31) in the form
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Go (i) = A (i) + A (i) 6" (i@,) g, (ie,) + A (i0) 67 (i0,) g7 (i, ) —
Yoo (10,)G (-1@,) T35 (i0,) = Y,5 (i0,) G5 (-iw,) T 5 (iev,),
g (i) = A2 (i) + A7 (i0,)G" (i) g, (iw,) +
AZ (i)Gs" (10,97 (i,) =Y 7 (i0,)G1” (-ie0,) T (i0,) -
Y2 (i0,)gs (-iw,) T2 (i@,),
foo (i) =Y (i0,) + Y067 (i0,) g7 (i@,) + A% (-i@,) 6" (-i@,) T2 (ie0,) +
Yo (i) G5 (i0,) g2 (i0,) + AZ (Hl@,) 63" (wi,) T (ie0,),
fo (i) =V2 (i) + Y0 (i0,) G (i9,) 7, (i0,) + A7 (-1, )G (-i@,) T (iv,) +

Yo (0,65 (i0,) g (io,) + AZ (-i0,)G5" (-iw,) .5 (i),

(62)

Here A!(im,), Y. (iw,) and Vg;(ia)n) are the correlation functions of superconducting state and
g" (im,) and f (ic,) are the full normal and anomalous one-particle Green’s functions.

The other system of four equations for quantities g¥, g2, f22,
formulated. We introduce the definition

Q; (iw,) =1- A, (i) G, (i,) (63)

and find the determinant of fourth order D,(i®,):

and f2’can be

Qiliw)  —AZ(i0)6 0 (0,) YE(0)GO () V()60 (Hiw,)
[ A%G0)60 60 Qi) V20,60 (Hiw) Y (i0,)60 (iw,)
Pl | )60 0y) T (0,)62 (1) QL (-iw,) A CiogeP oy &Y
Y (0)60 (0,) V2(i0,)60 (0,) AL (-i,)0 (-iw,) Q:(-iw,)

These equations are the Dyson-type equations and they establish the relations between
propagators g, fand f and correlation functions A, Y and Y . Anomalous correlation functions

have the properties of the order parameters Y and Y of the superconducting state.
The system of equation (62) permits us to obtain for T =T_ such linear dependences:

A (i,) T2 (i0,) = VEQ (1, Q2 (-ie,) + V2 (i0,)Q2 (-0, ) A (i3, )G (ie0,) +
Y2 (i) A2 (i, )G (-, )Q2 (i,) +
V2(i0,) A2 (-iw,) A2 (i,)65 (i0,) 6 (i, ),
A (0,) T2 (10,) = Q% (10, V2 (0,) A% (-0, )G (-iw,) + Q2 (i, V2 (0, ) QL (-iw,) +
V2 (i, ) A2 (i) A2 (10, )G (i0,)6°) (-ieo, ) +
V2(i,)Q2 (i, ) AZ (i0, )G (i3, ), (65)
A (i) T2 (i0,) =V 2Q2 (i0,)QL (-i0,) + V2 (10, ) QL (-0, ) A (19, )G° (i, ) +
V2 (i, ) A2 (i3, )G (-i,)QL (i0,) +
V2(i0,) A2 (i, ) A2 (1,6 (10, )G (-i2,),
Ay(i0,) T2 (i0,) = QL (10, V.2 (i0,) A2 (-0, )61 (-iew, ) + QL (0, )V 2 (10, )Q (i, ) +
V(i) A (-i0,) A2 (i0,)6° (0, )G (-iv,) +

@;(iwn)Qé (_ia)n)/\:tr2 (ia)n)gp) (Ia)n )1
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where A,(iw,) isequal to D,(iw,) with equated to zero the order parameters Y and Y :

A,(ie,) = (Q; (i,)Q; (i@,) — A (i) A7 (10,6, (10,67 (i@,)) x
(Q; (H@,)Q: (Hiw,) - A7 (-ie, )AL (-1@,) G (-iw,) G5 (-1@,)).

(66)

The system of equations (65) is not closed because up till now we have not the dependence of

the correlation functions A,Y and Y on the electron propagators.

This dependence can be the result of infinite summation of the diagrams and certainly is a

consequence of some approximations. Our main approximations are depicted in Fig. 3.

We shall now make our approximation (see Fig. 5), which determines the correlation function

Y asa result of summing a class of ladder diagrams, more precise.

fE:i:l

l]_O']‘T]‘ 1(— —>1 l202T2

D[~

1_/lal’a’(T - T,) = -

lor| o> <o Ulo'r!

Fig. 5. The ladder approximation for Y correlation function. The double dashed line is the
full anomalous Green’s function of impurity electrons. The solid thin lines are conduction

electron Green’s functions. The rectangle depicts the simplest irreducible Green’s function.

The approximation leads to the following analytical result

ﬂg,(im)~——z > GO"o,—iay; 1,050 | o, ~iw;|'c'io] x

o hoylyo,
G2 (i) T2 ()G (i),
where
G haiim; |05, | Lojio,;l,0io,]= f6(w +o, —a, —a,)

< (0)irr - H H. H
G, L ojaw;l,o,lw, | Loiw;l,0im,],

2 (0)i : . . : 1 . :
G hoiw; 1,050, | Lojioglo,io,] == p(m)l) p(icw,)x

(ﬂ5(wl - a)4)é] I é] b3 [25 1,—04 5(72,763 50'26 + 50'0 5010'4 50' 203 50'164 0,03 03,70'1] -
ﬂé(wl _a)B)é‘II Il [250' —03 02 -0y 50'26 +5cra 50'20450 oy 50'163 0,0, 04,—0'1])'

By using the anti-symmetry property which is the consequence of the Pauli principle
f_cg'(ia)n) == f_;:lr(_ia)n)’

we can transform the above equation and obtain a more simple one:
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Yoo (i,) =%[%vqrg(iwn)qla(—iwn) for (i0,) -

(71)
0,501, (=i, )0, (i0,) T 1 (i0,) + 26,0, (i0,)a, (H@,) T (io,)],
where
G = P(i@,)G (i,). (72)
As can be seen there are two different possibilities for correlation function :
one diagonal by spin indices
S 1 . T
Yol'clr(la)n) = qua(_la)n)ql’cr(lwn) fc:ir(la)n)’ (73)
and second non diagonal by spin indices
V2 Gi0) = <, (i), (0T 1) - T (). (74)

The diagonal solution belongs to the triplet superconductivity; the non diagonal, to the
singlet case.

We suppose that, in the last case, the change in the order of the spin indices is
accompanied by a change in the sign of the function.

In this way, we obtain

V2 (10) = 6 (iea)au ) T (0,) (75)
Both possibilities can be joined in the form
Y"(im,) = Aq, (@), (i) T" (i), (76)
where A = —% for singletand A4 :% for triplet superconductivity.
7. Critical temperature

Now we come back to the system of linearized equations (65) and substitute the
propagators f' by their values obtained from equation (76). The result of this substitution is the

following system of linear equations for the components of order parameter Y.
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Q; (i@,)Q; (-iw,) —

ﬂqA—iai?ql(iwn)}Y_"l; (i0,)+ G5 (10, )(Q% (00, )AZ (00, V.2 i) +

O (—i@,) Q2 (i, ) AZ (i, V.2 (iw,) +
G (<, )G (i, ) A2 (i, ) AZ (i, )Y 2 (ie,) = O,
A4
A0, (-iw,)q,(iw,)

Yoe(i@,) +

6" (10, )(Q2 (i, AT (i@, )Yz, (i0,) + {Qi (i0,)Q: (-im,) -

67 (<i,)G” (i, ) A (i, )Y 2 (ic0,) +

67 (i, )Q; (iw,)AZ (-iw, )Y 2 (iw,) =0,

O (e, ) Qe (i, ) AZ (-, )Y (i) + G (i@,) G5 (i, ) AZ (i, ) AZ (i, )Y 2 (i0, ) +

Lo }Y‘ﬁ(iwm

A0, (—o,)0, (io,)

G (i,)Q; (-l ) AZ (i, )Y 2 (ic,) = 0,

G (i@, (0, ) AY (i, ) AZ (i, )Y o (i0,) + G (i@, )Q; (i, ) AZ (w0, )Y, (ie0, ) +
G (10,)Q; (i@, )AL (i, )Y 2 (ic0,) +

{Qﬁ (io,)Q5 (-iw,) -

{Ql (10,)Q: (i)~ }722 (i0,) =0, (7"
T g, i), (i) |
where A, is equal to (66).
Determinant D, of this linear system of equations must be zero:
Qﬁ(k)Qé(fk%m G ()Q2 (-k)AZ (k) 617 (-k)QZ (k)AZ (k) G (-k)G5” (AT ()AZ (k) 78)
G2 (K)QZ (—K)AF (k) Qi(k)Qé(—k)—m G (k)G (AT (K)AZ (k) GP()Q; (KAZ (k) B
GO (K)QE(K)AZ (k) G2 (k)G ()AZ (K)AZ (k) Qi(k)Qé(—k)—m G (K)Q3 (—K)AZ (k) h
G2 ()G (AL (K)AZ (k) G2 (—K)Q; (K)AZ (k) G2 (K)Q (—K)AT (k) Qi(k)Qé(—k)—m

where k =i@, .
This condition determines the free parameter of the theory and, as usual, defines the
critical temperatureT,. In our case, the critical temperature is present in the dependence of the

Matsubara frequencies on T,: @, = (2n+1)7k,T, .
To determine the value of T_, we put A equal to value _1 which corresponds to the singlet
2

state and preserve equation (78).
The other argument that supports the choice of /1:_% is the approximation based on the

equality to zero of the functions Q! (im,) =0. In this special case, equation (78) is reduced to the
simple form

AP
220y (Hiw,)q(i0,)q, (-iw,)q, (io,)

D, = (A®Y[ 1 (79)
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where A? is A, with the condition Q! (im,)=0:
AP =G (1@,)6” (H@,)G5 (i0,)G3” (i, AT (i@, ) A7 (i@, ) A7 (i0,) AZ (- @,).

By taking into account the solutions (56)

Afawn)Af:(iwn):_@

and the definition of g , we obtain

D, = (A(f))z((Zi)z _1j =0, (80)

that is, the condition ; - _ 1.
2

8. Conclusions

We have constructed the strong-coupling diagram perturbation theory approach for the
investigation of the twofold degenerate Anderson impurity model.

First of all, the eigenfunctions and eigenvalues of energy of the localized d-electron part
of the Hamiltonian have been determined. Their dependence of intra- and inter-orbital Coulomb
interactions and of Hund rule coupling constant was established.

The perturbation theory around the atomic limit has been developed, and Matsubara
Green’s functions in the normal and superconducting states have been defined.

Dyson-type equations for these functions have been obtained for both states, and their
analytic solutions have been discussed in detail.

Since the main elements of our diagram technique are the irreducible Green’s functions,
we have carried out the calculation of simplest two-particle irreducible Green’s function and
determined its dependence on the spin and orbital quantum numbers. This quantity, which has
been found only in the low temperature limit, is approximated by taking into account the

contributions of statistical weight e, by assuming that the ground state of our system is
dominated by the two-particle triplet state E,.

Having this quantity and summing some class of diagrams, we have obtained the A

correlation function.

We found two solutions for the renormalized Green’s functions of the d-electrons and
determined the spectral weight.

We have proved that orbital degeneracy gives an additional contribution to
“metallization” of the impurity states, i.e., to an enhanced transfer of spectral weight to the Fermi
level.

We have obtained an approximate expression for anomalous correlation functions and, in
particular, for superconducting order parameters.

We have investigated the linearized equations for order parameters and formulated the
condition for the realization of singlet superconductivity and determination of the critical
temperature.
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