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Abstract 

 

Nonlinear cooperative stationary phenomena are studied for the interaction of Bose-

condensed phonons with millimeter electromagnetic radiation in the biological media. The real 

and imaginary parts of the dielectric susceptibility and permeability, refraction and reflection 

indexes determined by Bose-condensed phonons are obtained. The possibility of occurrence of 

the polariton effect in biological objects is predicted. 

 

 

1. Introduction 

 
The investigation of the nonlinear cooperative phenomena in complex systems is one of 

the most important and up-to-date problems of the modern science. In recent years, interest in the 

investigation of the interaction of the millimeter range coherent electromagnetic radiation with 

medical-biological objects has attracted much attention due to many applications of millimeter 

waves in the applied medicine, biotechnology, and agriculture [18].  

The concept of generation of phonons in alive media was proposed by Fröhlich [9]. He 

theoretically suggested that biological systems can generate collective vibrational modes 

(phonons) in the GHz frequency range and these phonons might play a basic role in the active 

biological systems. The idea is based on the assumption that, if the generated energy is supplied 

to the phonon at a rate greater than a certain critical value, then the phenomenon of Bose 

condensation to the lowest excitation of a single mode can occur. This kind of condensation that 

occurs at the lowest excitation mode can serve as a means for energy storage as well as a channel 

for specific bio-processes, such as cell division or macromolecule synthesis. This idea stimulated 

further investigations in the domain with an aim of studying and predicting new biophysical 

phenomena and their effective use in biomedicine [1015]. 

Although the number of experimental and theoretical papers in the field continuously 

grows, up to the present there is no clear understanding of the mechanism of generation and 

interaction of the millimeter radiation with the biological media. Thus, a consistent theory of the 

low-intensity millimeter wave interaction with biological media has not been elaborated, and a lot 

of cooperative nonlinear phenomena have not yet been studied. It is well known that, due to the 

metabolism processes in the organisms, the excitation of the polarizing coherent waves is 

possible in a frequency range of 10
11

-10
12

 Hz. These oscillations are supposed to cover parts of 

biological membranes and, as was demonstrated, it can be equivalent to Bose-Einstein 

condensation of phonons in these media. For example, Davydov investigated the possibility of 
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the collective state excitation in one-dimensional molecular structures and in double-helix protein 

molecules in the form of solitons [16, 17], which was further developed for dissipative structures 

[18]. Nonlinear, collective, and stochastic phenomena of Bose-type quasiparticles in condensed 

media and, in particular, the nonlinear dynamics of the immune system interaction with the 

bilocal cancer tumor were developed in [19]. A new simple model of local interaction between 

two spaced cancer cells and cytotoxical T-lymphocytes is proposed. 

This paper is focused on the investigation of nonlinear cooperative phenomena at the 

interaction of a Bose-condensed phonon with the millimeter electromagnetic radiation generated 

in a biological object. We start in Section II with a Hamiltonian of the interaction of millimeter 

electromagnetic radiation with coherent phonons in the square form for the low concentrations of 

Bose-condensed phonons. The collective nonlinear properties of the coherent phonons are 

determined, in particular, by the phonon-phonon interaction pattern, the energetic spectrum of the 

coherent phonons and their interaction with the non-condensed quasiparticles. Section III 

concerns the study of the real and imaginary parts of dielectric susceptibility and permeability, 

refraction and reflection indexes determined by Bose-condensed phonons. This study represents a 

major interest in modern biophysics. In Section IV, the numerical results on calculations of 

system characteristics are presented. The possibility of occurrence of a polariton is also 

discussed. Conclusions are given in section V.  

 

2. Model  

 
In what follows, based on the Fröhlich idea that coherent phonons excited in biological objects 

turn into coherent internal photons and form a self-correlated interval millimeter electromagnetic 

field, we derive a set of equations that describe the evolution of these photons and phonons. As 

was previously demonstrated, the coherent state of the phonon in biological objects can be 

similar to the coherent state of the exciton in condensed media [2023]. These coherent states of 

the elementary excitations can appear in different regimes; i.e., in the regime of ultrashort pulses 

existing for a time period shorter that the relaxation times as well as in conditions of Bose-

Einstein condensation for a time period longer that the relaxation times, but shorter that the 

quasiparticle life time. In both cases, the corresponding elementary excitations are characterized 

by a certain phase, wave vector, and macroscopic value of the single-particle state; that is, the 

number of excitations in condensate VNV ~ , where  V  is the system volume. 

The Hamiltonian of the system has the form  
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where   is the dipole-active phonon energy; 
 
kkk

EEE  , 
 
kkk

HHH    are the intensities 

of the electrical and magnetic fields, respectively; 


k
E   and 



k
H   are the positive or negative 

frequency parts of the variable electromagnetic field; )(
kk

aa 


 are the operators of creation 

(annihilation) of the dipole-active phonons that satisfy the commutation relation '],[ kkkk
aa 


 , 

0],[ 

kk
aa  ;   and    are the dielectric and magnetic permeability of the biological medium; 

 kg


  is the phonon-phonon interaction constant; and 
k

d   is the dipole momentum of the 

transition into phonon state.  
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In Hamiltonian (1), both the field and the Bose-condensed phonons are supposed to have 

the same wave vector 0k


, polarization, and phase. The amplitudes are considered to be 

macroscopically large, i.e., proportional to system effective volume V . Note that the effects of 

spatial dispersion were neglected being insignificant in the actual spectrum range. Thus, we 

consider the case of phonon mass m ≈ ∞. 

The Heisenberg motion equation for the operator 
k

a   has the form 

                   aiE
d

a
V

ag
a

dt

da
i  



2

,           (2) 

where the wave vector indexes are omitted. Note that we phenomenologically introduced the 

term i a , which takes into account the Bose-condensed phonons leaving from condensed state, 

in (2). On the other hand, the attenuation term can be considered strictly within the framework of 

the quantum theory of attenuations and fluctuations using the Fokker-Plank master equation [24]. 

The polarization of the biological media is given by  

                  



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where 
d

O
N

V
V  , and dN   is the atomic dipole number.  Taking account Hamiltonian (1) and (3), 

we obtain the following form for polarization  

                   
OV

da
P  , 

OV

da
P


  .             (4) 

We assume that the Fröhlich electromagnetic millimeter field is spread along the х axis. 

Thus, the equation of the positive frequency component of the electromagnetic field is equivalent 

to  
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where c is the light velocity in the biological media.  

Equations (2) and (5) completely describe the spatial–temporal evolution of the Bose-

condensed phonons in the biological media, taking into account self-interaction and the 

interaction with the Fröhlich field. 

     We write the macroscopic amplitudes of the phonons and the field in the form of modulated 

plane waves with frequency   and wave vector k  

    ikxtietxaVtxa  ,~, ,   

               ikxtietxEVtxE   ,
~

, ,                                                           (6) 

where  txa ,~  and  txE ,
~

 are the slowly-varying amplitudes satisfying the following conditions  

a
t
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Taking into account the above assumption, equation of motion (2) is transformed in  
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E
d
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where    is the resonance detuning between the Fröhlich field frequency and the phonon 

frequency. 
2~an  represents the concentration of the Bose-condensed phonons. 

 

3. Stationary States  

 

In this Section, we consider the steady states ( 0/~ dtad ) of equation of motion (7). We obtain 

the dependence of amplitudes of phonons on photons    

E
ign

d
a

~

/

/~


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


                                                        (8) 

The dielectric susceptibility of the biological media is given by the relation  EP / . Taking 

into account (4) and (8) for the real and imaginary parts of the dielectric susceptibility, we obtain  
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Thus, the dielectric permeability, that takes into account the phonon level contribution, is 

described by the expression 

                           i4 ,                                                                              (10) 

where  ,  are the real and imaginary parts of the dielectric permeability 
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Here,   is the phonon dielectric permeability that takes into account the dielectric permeability 

of all excitations besides phonons of the biological media. The real and imaginary parts of the 

permeability determine the frequency dispersion. From (10) we conclude that the dielectric 

permeability of the biological media depends significantly on Bose-condensed phonon density n.  

In what follows it is convenient to switch to the following dimensionless quantities 
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Taking account (11) from (10), we obtain 
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  22
]1[ fNN  .                                   (12) 

For a plane wave, where the surfaces of the field components are planes, the dielectric 

permeability perpendicular to the spreading direction is related to refraction index n  and 

absorption index   by the expression [25] 
2 2 2n i n     .                                                                  (13) 

Thus, we can write the refraction and absorption indexes  

                    
2

22  
n , 

                                                
2

22 
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                                                           (14) 

It is well known that reflection coefficient R  is defined as the ratio of the time average 

energy flow reflected from the surface to the incident one. For the case of a perpendicular flow, 

the reflection coefficient can be written [25, 26]: 
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In what follows, consider that the electromagnetic field is uniformly distributed in the biological 

media  0/
~

 xE . From (5) we obtain the equation for the field temporal evolution in the 

slowly-varying amplitude approximation: 
2 2 2 24 2 2 2

1 .
2 O O

dE c k d d i g i
i E n a

dt V V

    


  

    
         

   
           (16) 

In the stationary case 0/
~

 tE  and the dispersion limit, where the attenuation of the dipole-

active Bose-condensed phonons can be neglected, from (16) we obtain 
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Note that equation (17) determines the dispersion law of the nonlinear polaritons; that is, 

the energy values of the elementary excitations in biological media at the Fröhlich radiation 

interaction with dipole-active Bose-condensed phonons can occur at the same value of the wave 

vector. The position and form of the polariton branches depend not only on the parameters of the 

phonons and the electrical field, but also on the stationary concentration of the Bose-condensed 

phonons. The concentration depends on the Fröhlich field intensity according to equation (12). 

Thus, the appearance of a polariton is caused by the intersection of the coherent photon 

dispersion curves with the Bose-condensed phonon for small wave vectors. Close to the 

intersection point, the energies and pulses of both excitations coincide and the bond between 

them becomes significant. As a result, neither photon nor phonon could be considered as 

independent elementary excitations in biological objects, but a new elementary excitation—

polariton—appears in the biological objects. 

 

4. Numerical Results  

 
As noted above, expression (17) coincides with that of dispersion law of the polariton in 
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the case of appearance of a soliton in the excitonic spectrum range [27]. Using the following 

dimensionless variables ,/ Okkk   )/( Ock  , )/( OOO ck , where /gnckO  , from 

(17) we obtain the expression for dispersion law 


















1
1 022k .                                                                 (18) 

According to (12), for small values of the field intensities, the dependence of the phonon 

concentration and the field is linear. While excitation increases, the phonon-phonon interaction 

processes play an important role. It is easy to observe that the relation between N  and f is linear 

for 3  (see Fig.1).   

 
Fig. 1. Dependence of phonon concentration on field intensity for different values of resonance 

detuning:  (1) for   = 5.0, (2) for   = 1.7, (3) for   = 5.0, (4) for   = 10.0, and (5) for  

  = 20.0. 

 

For 3 , the  fN  dependence is not linear any more and is characterized by a 

hysteresis region where three values of the dipole-active Bose-condensed phonon density 

correspond to one value of the Fröhlich field intensity. Figure 1 shows the dependence of phonon 

concentration on field intensity for different values of resonance detuning  . As it is shown in 

the figure, the growth of the field intensity leads to a jump-like increase in the Bose-condensed 

phonon density at 3 . As the field decreases along the upper curve, a jump-like decrease in 

the phonon density occurs at 3 . Thus, if the resonance detuning value is larger than the 

critical one 3c , then the forward and backward alteration of the Fröhlich field intensity 

leads to jump-like changes in the phonon density and to the formation of an amplitude hysteresis 

loop in the  fN  dependence. The frequency hysteresis can be shown to occur also if one 

resonance detuning value corresponds to three values of the phonon density, values that are larger 

than the critical field intensity value   4/3
3/4cf , one of which is unstable. 

Note that the phenomena of nonlinear hysteresis present in the dependence of the Bose-

condensed phonon density on Fröhlich field intensity have an effect on all dielectric functions: 

the real and imaginary parts of the dielectric susceptibility and permeability, the refraction, 

absorption, and reflection indexes. Figure 2 shows the dependences of the real (left) and 

imaginary (right) parts of the dielectric permeability of the biological object on field intensity 
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caused by Bose-condensed phonons for 0.5 ,2.5    and different values of the resonant 

detuning. If the resonance detuning values are smaller than the critical 
c value, then the real and 

imaginary parts of the dielectric permeability are single-valued functions of the field intensity. 

With an increase in the resonance detuning, the curves   ,f   and  f   become deformed and 

hysteresis dependences    ff   ,  appear at 
C  . 

                
Fig. 2. Dependences of the real and imaginary parts of the dielectric permeability on the amplitude 

of the field for  =5.2,  =5.0 and the values of the resonant detuning similar to that in Fig. 1. 

 

Figure 3 shows the dependences of the refraction, absorption, and reflection indexes on the field 

amplitude for different values of resonance detuning. From this figure, we conclude that for high 

values of the resonance detuning the    ffn ,  and  fR  dependences become more 

complicated. Thus, these functions exhibit a hysteresis behavior caused by the nonlinear 

dependence of the Bose-condensed phonon density on the coherent millimeter electromagnet 

field amplitude if the resonance detuning exceeds the critical C  value. 

         
 

Fig. 3. Dependences of the refraction, absorption, and reflection indexes on field amplitude for the 
same parameters as in Fig. 2. 
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5. Conclusions 

 
In this paper, we develop a model to describe the interaction of Bose-condensed phonons 

with millimeter electromagnetic radiation in the biological media. We obtain the real and 

imaginary parts of the dielectric susceptibility as well as the permeability, refraction, and 

reflection indexes determined by Bose-condensed phonons.  The dielectric functions, as well as 

absorption and reflection coefficients, strictly depend on the coherent millimeter electromagnet 

field amplitude and resonance detuning. For the values of the field intensity larger than the 

critical
cf  value, a hysteresis appears in the system. The dispersion law shows that the interaction 

of Fröhlich radiation with dipole-active Bose-condensed phonons in biological media can lead to 

the occurrence of polaritons. We show that the position and form of the polariton branches 

depend on the stationary concentration of the Bose-condensed phonons.  We mention that, for 

finite values of the phonon mass, equations (2) and (5) describe the electromagnetic field 

propagation and the generation of the coherent photons in biological media and can be 

represented by a system equivalent to the GinzburgLandauKeldysh system. Neglecting the 

interaction of the coherent phonons with the thermostat g = 0 , the above equations have soliton 

solutions.  We believe that our work provides a good basis for future studies and, in particular, 

provides some pointers for more detailed investigations of the dynamics of Bose-condensed 

phonons with millimeter electromagnetic radiation in biological media. 
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