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INTRODUCTION 
 
The linear separation problem of data sets is 

an important concept in the data analysis. This 
theory is widely used and applied in many fields 
such as pattern recognition [1], decision making [2], 
disease diagnosis [3], biometrics [4], automatic 
document processing [5] and others. 

For example, there are two sets of objects 
(attributes) 
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where nii Rba ∈ and for , ,..., , m21i =∀  
k21j ,..., ,=∀  and .∅=BA∩  

 The aim of the linear separation is to build a 
decision function of the form: 

0)( wxwxf T −=  
which divides the space into two subsets such  

0)( <iaf şi 0)( >ibf  
where Ai∈∀ and .Bj∈∀   

Here w is a column vector of ,nR  and 0w is 

a scalar: Rw ∈0 . The symbol „T” means 
transposition operation, in this case all vectors are 
column vectors. 

Separation (classification) can be formulated 
as a quadratic programming problem. In this paper 
we will discuss three models of linear separation. 
For one of these models we will introduce an 
effective procedure for numerically solving. 

 
 

1. THE MODEL OF MAXIMUM 
SEPARATION [6] 

 
We choose a hyperplane 
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which maximizes the minimum distance from any 
point of the sets A and B. The distance from the 
point nRz∈  to the hyperplane (1) is equal to 
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Here and below || . || is the Euclidean norm. So 
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           The problem consists in maximizing the size 
mind  which is equivalent to the following problem: 
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The problem (2) is a nonlinear problem 
(non-convex) towards the unknowns  

,R∈δ  ,0 Rw ∈ .nRw∈  
We impose the following restriction: 
.1|||| =w  Then, introduce the variables 

nRwu ∈=
δ

 and Rwv ∈=
δ

0 , 
 

problem (2) is equivalent to the following problem: 
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The problem (3) is a convex quadratic 
programming problem with ( )1n +  variables and 
( )km +  linear constraints. If nRu ∈∗ and 

Rv ∈∗  is an optimal solution of problem (3), then 
the solution of (2) is: 
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The vector ∗w  is perpendicular to the 
considered hyperplane and has a length equal to 1 , 
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and the size ∗

0w  is shortest distance between the 
hyperplane and origin of the coordinate system. 

 
 

2. SUPPORT VECTOR MACHINES 
(SVM) [7]  

 
 In this method the elements of set A are 
labeled with 1t −= , and the elements of set B 
with 1t = . In other words, 
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 We note that the hyperplane (1) does not 
change if w  and 0w  are multiplied by the same 
positive constant. It is convenient to choose this 
constant such bellow 
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Thus, taking into consideration the (4) we can write 
. ,))(( BAx1wxwxt i

0
iTi ∪∈∀≥−  

Determination of the optimal separating hyperplane 
is reduced to solving the problem: 
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The problem (5) is similar to the problem 
(3). The constraints of (5) ensure that in the optimal 
solution ∗w , ∗

0w  we have: 
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3. REFORMULATING THE 
PROBLEM IN THE TERMS OF THE 

CONVEX QUADRATIC 
PROGRAMMING 

 
Let the convex hulls of the sets A and B: 
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Then the problem of optimal separation of the sets 
A and B can be formulated as: 
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 Let the matrices kkmm VU ××  , and kmZ ×  
defined in the following way: 
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Also note 
 

kmT
km R +∈= ),...,,,,...,,( 2121 βββαααγ , 
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The matrices mmU × , kkV ×  and Q  are positive 
semidefined.  

With these notations the problem (6) 
becomes: 
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Note that the objective function depends only 
on the scalar product of the vectors ia and jb . The 
problem (7) is a convex programming problem and 
therefore it has a global optimal solution. 

 
 

4. SVM AS A PROBLEM TO SOLVE A 
SYSTEM OF EQUATIONS 

  
Using Kuhn-Tucker theorem, it demonstrates 

that the dual problem (5) is: 
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The vectors ii ba ,  which 0i >γ  are called 
support vectors. 

It is noted that the problems (7) and (8) give 
one and the same results. In the following we will 
show how the problem (7), which is equivalent to 
the problem (8) can be reduced to solving a 
quadratic equation system. 

If kmR +∈*γ  is an optimal solution of the 
problem (7) then there is 2R∈*λ  such that [8]: 
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where ( )γΓ Diag=  is a diagonal matrix: 
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and the notation [ ]ic  here and further mean the 
component i  of the vector c . 
 Note the ( )λγ TBQDiagG +=  and 
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Such the problem (7) is reduced to solve the system 
of equations and inequalities: 
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Theorem. For { }0eBD ≥==∈∀ γγγγ ,:  the 
Jacobian matrix  
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is non-singular. 
Demonstration of this theorem is analogous of proof 
the Theorem 1 from [9]. 

We define now the functions +→ RRqp :, : 
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The functions ( )xp  and ( ) ( )xpxq −=  are twice 
continuously differentiable: 
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It is easily established that: 
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Considering this and introducing auxiliary 
variables m21 ηηη ,,, … , k21 μμμ ,,, … , 1λ  and 

2λ  the problem (7) can be reduced to solve a 
system of ( )1km2 ++  equations with same 
number of unknowns [9]: 
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This was noted as follow: 
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 The system (9) may be reduced to the 
( )2nm ++  equations with the ( )2nm ++  
unknowns, replacing the vectors α  and β  using 
functions p and q : 
 

( ) ( ) ( )( )Tm21 ppp ηηηα ,,, …= , 

( ) ( ) ( )( )Tk21 ppp μμμβ ,,, …= . 
 

 The best-known method for solving 
nonlinear systems of equations (9) is the Newton 
method [10]. Newton's method has very attractive 
theoretical and practical properties, because of its 
fast convergence: under the nonsingularity of the 
Jacobian matrix it will converge locally 
superlinearly. 
 Let be  
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and  
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the optimal solution of problem (8). When the 
decision function is given by: 
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5. CONCLUSIONS 
 

 In this paper we presented an overview of 
mathematical problem separating two data sets. The 
classification methods are based on search for an 
optimal hyperplane which separates the considered 
data. A special place is occupied by SVM 

introduced in 1995 by Vladimir Vapnik and 
discussed in the literature by many researchers [11]. 
 Here was introduced reformulation of 
Kuhn-Tucker optimality conditions in an equivalent 
system of smooth linear equations (cubic). The 
system of equations can be solved efficiently using 
Newton method. In the neighborhood of the optimal 
solution *γ the rate of convergence of Newton's 
sequence is superlinear.  The numerical examples 
clearly show that the proposed method is promising.  
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