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1. INTRODUCTION 
 

The nonlinear calculus of the structures now 
represents a necessity. This difficult calculus at 
structural ensemble level is, nowadays, possible 
because of the fast development of computational 
resources. In current practice of design of the 
reinforced concrete structures, the real nonlinear 
behaviour from the physical point of view of this 
composite material can’t be emphasized. This 
behaviour is reflected in the development of the 
cracks from the tensioned concrete, in the crash of 
the material in the compressed concrete area as well 
as in reinforcing yield. All these constitutive 
particularities determine the response of the 
material not to be produced as a single whole at 
some post – elastic loading levels. Consequently, a 
nonlinear analysis is approached, using the modern 
concept of stiffness degradation of the strength 
elements under the action of increasing/decreasing 
monotonous loading or cyclic. 

The algorithm of computational incremental 
solving of elasto-plastic problems is based on the 
plastic flow theory with the application of von 
Mises yield criterion for concrete and reinforced 
concrete and considering elastic kinematic/isotropic 
hardening behaviour and the computing model for 
determining the generalized modulus of plastic 
displacement. The numerical integration of 
condition equations is made by the finite and 
boundary element computational method, 
considering the material yield theory adapted to this 
method. Computational iterative methods are used 
for the extension of the class of problems solved in 
case of body deformation according to the plastic 
limit with yield criterion. 

At each iteration the objective in solving with 
displacement method is to observe the conditions of 
static equilibrium. When solving the problem the 
algorithm diverges in two directions depending on 
the chosen computational method. This method is 
chosen from the family of computational methods 
compatible with finite element method. The two 
directions are:  

-calculus through initial stresses, also called 
the elastic solution method; 

-calculus through analytical design method on 
the yield surface (the antigradient lowering of 
inadmissible stresses on the yield surface method). 

The paper also deals with the algorithm of 
foreseeing optimal step of considering the loading 
in the crack propagation stage and with the scheme 
of the adjustment process. At the same time the 
scheme of the regularization process utilization is 
presented. 

An often difficulty of the modelling process of 
the crack  increase, appears and it is expressed by 
the next paradox: the boundary conditions depend 
on the variation crack parameter, which also 
depends on the control parameter. These conditions 
must be calculated before the crack increase, while 
they are determined in the final increase stage.  This 
problem is motivated by the fact that this limit 
conditions are explicitly expressed in FEM. This 
difficulty can be avoided in two ways:  

- the loading promoting with small steps;  
- the extension of the eventual value of the 

characteristic parameter, depending on the crack 
length. 

The major contribution of this work is 
finishing a mathematic algorithm of the proposed 
methodology development. 

 
 

2. ITERATIVE PROCESS OF THE 
INITIAL DEFORMATION METHOD 

 
The presentation of the computing algorithm 

will be done in solving stages, as follows: 
1st stage: The incremental loading process is 

applied (step by step) in static /dynamic numerical 
computational analysis. The initial action {P0} is 
applied according to the case of loading. The linear 
analysis  with FEM is done and consequential stress 
and strain fields are obtained {σ0}, {ε0}. The initial 
loading is conditioned so that after its application all 
the points of the discreet model should displace 
(linearly or angularly) only elastically; the reach of 
the boundary state of yield in some points of the 
model should take place when applying the next 
loading step, which is incremented  {ΔP1}. This can 
be done by using the scale coefficient method, 
taking into account the fact that the loading is 
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proportional. The analysis of the distribution of 
plastic areas depends on the size of the loading step 
{ΔP}. 

2nd stage: 1. The increase of the loading {ΔPi} is 
applied. The linear computational calculus with 
FEM is done, consequential stress increase {dσ *} 
and strain increase { dε* }, are obtained. The values 
of the total current deformations are calculated by 
adding the plastic deformation increment {dε p

ij} to 
the previously obtained value. Further on the work 
presents the algorithm of checking the boundary 
areas corresponding to the functions of plastic 
potential, f0, f, F (the potential function). 

2. The value of the yield function (the plastic 
potential function) is calculated depending on the 
adopted constitutive law and the stress function 
around that point is checked to see if it falls on the 
boundary aria frontier. 

If f0({σ*
i})<0, then the point corresponding to 

the given stress state is situated in the elastic 
behaviour domain (in the elastic deformation stage); 
but if f0({σ*

i})>0 there results that at the considered 
point, a process of plastic flow  of the material takes 
place, which corresponds to the potential function, 
f0. This condition is verified for all the points from 
the considered discrete domain. The time history 
(for several steps of loading) for the deformation of 
the material around the point where the plastic flow 
condition is obtained, is examined. 

If f0({σ*
i})=0 and f0({σ*

I-1})>0, then it is 
necessary that the inadmissible stress state should 
be corrected, so that one should obtain f0({σi})=0. 
This condition means that the point corresponding 
to the stress state falls on the limit just on the yield 
area. 

3. The split of the part corresponding to the 
increase of elastic deformation in proportion to the 
rate of the increase of plastic deformation is done 
through the r coefficient. The determination of this 
coefficient is done by putting the condition of 
observing the next equation (1), which has the 
meaning from the above mentioned point 2: 

 

 { } { }( ) 0*10 =+− σσ drf i               (1) 
 

The linear interpolation is made and the 
first approximate value of r1 coefficient is 
obtained through (2): 
 

{ }( ) { }( )( )( )1
*

11 −− −−= iii fffr σσ       (2) 
 

From several reasons (nonlinearity, 
nonmaintainance of the 1D loading condition, the 
convexity of the yield area) first approximation of 
the r1 coefficient doesn’t always satisfy the 
incremental development strain condition: 
 

{ } { }( ) 0*
110 ≠+= − σσ drff i                (3) 

 

4. Then, the following approximation for the 
determination of the r coefficient is done, 
considering the next (4) formula: 
 

{ } { }*
0

1 σσ df
frr T∂∂

−=                    (4) 

 

The elastic part of the deformation is defined 
by the relation r{d σ*} and the remaining part  
corresponds to the plastic deformation  
characteristic curve ” σ-ε”. 

5. That is why the influence of the loading step 
be decreased as much as possible while the elasto-
plastic deformation interval is divided into m 
subintervals. 
 

ffm i ∆= *                                 (5) 
 

6. Then calculus of the corresponding stresses 
for each subinterval mI, is done as follows: 
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where, 
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H’is the slope of the curve of material deformation. 
The nominator from (5) depends on the size of the 
loading step ΔP. 
[D] – is the constitutive matrix (stress – strain 
relationship) for a linear elastic, isotropic material 
and for plane strain/stress. 

3rd stage: If the conditions for the current 
point situated in the considered discrete domain are 
fulfilled: 
 

      { }( ) 0* >if σ ,   { }( ) 01 =−if σ ,               (9) 
 
then the incremental increase of the stress {dσ*} is 
the result of the plastic deformation of the body. In 
this case, the pursuit of the curve of the material 
deformation is done through the relations from 2nd 
stage; we then obtain the point where the value of 
the coefficient is zero. 
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4th stage: We verify the equilibrium condition  
by previously determining the deviation value, 
which defines the difference between the state 
created by correcting the inadmissible stresses {σ*

i} 
and the state corresponding to the current stresses 
{σI}: 
 

{ } { } { }iid σσσ −= ∗∗∗                      (10) 
 

  { } { }[ ]∫ ∗∗=∆
V

T dVBdP σ                  (11) 

 

Next, the {ΔP} vector is applied as external loading 
(the right part of the equilibrium equation system) 
and the linear problem is solved. The increases of 
the displacements and those corresponding to {dσ*

i} 
stresses and to {dε*

i} strains are obtained. 
5th stage: The process from 2nd and 3rd stages 

is repeated and the convergence criteria of the 
iterative process, defined by the next (12) relation, 
is verified: 
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where, ε - is the allowable variation of the accuracy. 
6th stage: For verifying the accomplishment 

of the convergence criterion, the next loading step 
with exterior forces {ΔP} is activated. Linear 
analysis is accomplished. The observance of the 
boundary conditions is analyzed in the potential 
curve neighborhood in every point of the discrete 
domain, according to the stages presented above. 
The iterative incremental analysis continues till the 
stipulate application of the exterior force is obtained 
(corresponding to the increase of the crack length) 
or the calculus steps in case the iterative process 
doesn’t converge, which means that the 
convergence condition is not observed after (10-20) 
iterations. Physically, this means that the pass of 
stable increase into an instable increase of the crack, 
therefor the breakage of the body; from the 
mathematic point of view this signifies the fact that 
the structure matrix degenerates. 

 

Table 1. 
 

I            II           III           IV 
n 0 or 

1 
1, 2, 
… 

0 or 
1 

1, 2, 
… 

0 or 
1 

1, 2, 
… 

 
The identification is introduced for the „n” 

point (n indicates the point’s number). In table 1 
above, number II - corresponds to the initial yield 
(f0 = 0), number III - indicates the current loading 
surface (f = 0), number IV - refers to the limit yield 
surface (F = 0). In every cell two digits are 

indicated: 0 and 1. 1 - indicates that when loading, 
in that point, the initial fracture surface is achieved, 
and if the stress state around that point didn’t 
achieve the initial fracture surface, 0 will be written. 
The rest of the are needed to reach the considered 
stress surface. 
 
 

3. THE ALGORITHM OF THE 
ELASTO-PLASTIC DEFORMATION 

MODELLING BY ANALYTICAL 
PROJECTION ON THE YIELD 

SURFACE  
 

According to the arguments shown above, the 
application of the projection on the yield surface 
method simplifies the algorithm of elasto-plastic 
problem, essentially. The algorithm is made in 
stages, as follows: 

I. The P0 force is applied. The stress and the 
strain states components {σ},{ε}  are calculated 
around current point. 

II. The numerical value of the following yield 
function, F (the plastic potential function) is 
calculated for every discrete point of the domain 
and the next expressions are verified. 

- If the value of the yield function, F≥0, we 
pass to IV. 

- If F<0, an inadmissible stress/strain state 
takes place and we pass to III. 

III. An element which has the discrete point 
of the domain is actioned by an unloading force (the 
unloading phenomena by which the return on the 
yield surface is made, takes place) through the 
mentioned analytical expressions, according to the 
next sequence: 

- the α (angle of open crack), f, d, γ parameters 
are calculated; 

- the plasticity matrix components are 
calculated; 

- the FEM computational process is pursuing 
the observance of the convergence condition. 

IV. We verify the continuing criterion of the 
problem. 

V. We action with the next loading step 
{ΔP}. The persistence of the loading is made by 
passing to II. The  process described at II and III is 
repeated. 
 
 

4. CONCLUSIONS 
 

1. We made an analysis of the modern 
constitutive models which renders the concrete and 
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reinforced concrete elements behavior, elements 
solicited in any possible way (monotonous, 
increasingly /decreasingly, or certain solicitation). 
The models were elaborated by using computational 
simplifying theories and by proper mathematics for 
continuous spectrum and deformed mechanics and 
for nonlinear breakage mechanics. 

2. We promote an original computational 
model in which three functional areas are 
considered: - the initial yield of the material, the 
flowing area of the material and the damage surface 
of the body. With such mathematical - mechanical 
approaching the variables for each case are argued 
by experimental physical determinations; Uniaxial, 
bi-triaxial tests are used. We prefer those 
computational models in which experimental data 
are confirmed by analytical solutions or by some 
special elaborated tests according to the existent 
engineering computational standards. 

3. A nonlinear numerical incremental analysis 
was made by using the difference equations of 
mathematical physics until the reaching of the 
boundary flowing state of the reinforced and 
cracking/crushing of the concrete. We continued the 
analysis till the final state of the material damage 
around a point from the reach of degradation state 
on the section. The concept of damage development 
of material performance. 

4. A generalized algorithm for determining the 
limit deterioration state of the construction element 
was done by making some constitutive models 
specific to the real state of loading, into an 
incremental analysis frame, for random iteration. 
We used the initial deformation method for this 
incremental analysis. 
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The algorithm of plastic  
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The algorithm of computational calculus of  

 
 
          No                                                                No    
                                                     
 
 
                       < -3.0                 ≥ 3.0 
 
 
 
                                                                                                                                      
                                                                                                                                           
 
 
 
 
 
 
 
           
 
 
                    < -3.0                ≥ 3.0   
 
 
 
 

  

 
 
 
 
 
 
 
                    
 
 
 
 
                                                             < - 3.0                                                          
 
 
                                                     
 
 
 
 
 
 
 
 
 

 

generalized modulus of plastic displacement pH  
 
 
     Yes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ≥ 3.0 
 
 
 
 

Deviatoric unload First monotonously loading 

I1 

( )

( ) 4.0
max,1

1
max,1

1 3cos1.177.1

1
5.0

5.016.145.1

θ+











−

−
−

−

=
I

II
H

 

( ) ( )
( ) 4.0

max,1
2

max,1
1 3cos1.114

5.0176.15.0
θ+

−−−
=

II
H

 

      

( ) ( ) 2.052.0

max

3cos1.1 θ
ε
δ

+









= δH

 

I1 
( )5.0
20

1

'

−
=

I
fH

H cp

 ( )45.1
0.3

1

'

+
−

=
I

fH
H cp

 

( )
( ) 35.065.0

max1

'82.035.1
δεH

fδ
H cp =

 

( )
( ) 2.0

2
1

2 3cos1.110
5.0
θ+

−
=

IH
 

( ) max150

2

' 10350 εδ −=
H

δfH c
p

 

I1 

( )
( ) 2.0

1
2 3cos1.1

45.182.0
θ+

+−
=

IH
 

Reloading 


