

ПРАКТИЧЕСКОЕ ИССЛЕДОВАНИЕ МОНИТОРИНГА, УКРЕПЛЕНИЯ И ТЕСТИРОВАНИЕ БЕЗОПАСНОСТИ GNU LINUX

Антон СЕНЮШИН

Департамент компьютерных наук и системной инженерии, CRI-231M, факультет вычислительной техники, информатики и микроэлектроники, Технический университет Молдовы, Кишинев, Республика Молдова

Автор кореспондент: Антон СЕНЮШИН, e-mail: seniusin.anton@iis.utm.md

Научный руководитель/координатор MORARU Victor, conf. univ

Резюме. Данная научная статья посвящена практическому исследованию мониторинга, укрепления и тестирования защиты системы Linux, которая содержит в себе теоретическое и практическое объяснение структуры системы. В свою очередь структура описывает создание программного обеспечения рассчитанного на мониторинг файловой системы и мониторинг параметров сервера для помощи неопытным администраторам и пользователем на начальном пути администрирования серверов. Так вся система связанна с Linux, то все необходимые зависимости устанавливаются на, по мере прохождения проекта, дистрибутив Debian. Первая часть проекта реализована в виде frontend, которая отвечает за связь и активацию между компонентами всего проекта, реализованная на web framework Flask. Вторая часть проекта заключается в действиях происходящих на backend, которая в свою очередь отвечает за два массивных модуля: мониторинг файловой системы и мониторинг параметров сервера в режиме реального времени. Теоретическая часть отвечает за объяснение важности понимания кибербезопасности и необходимых тактик защиты, подкреплённых практическими навыками. Весть проект создан по принципам современной защиты серверов, а также укрепления защиты при помощи программного обеспечения с открытым кодом.

Ключевые слова: linux, cybersecurity, python, docker, flask, virtualization

Введение

Один из основных концептов, который приобрёл особую популярность в последние годы заключается во внедрении безопасности, а именно укрепление и последующий мониторинг производимых проектов. С резким ростом использования технологий, также увеличилось количество атак проводимых на запущенных в производство проектах. Следовательно необходимость в профессионалах кибер безопасности как никогда требуется на рынке труда, что следственно ведёт к более ужесточённым условиям по вхождению в данную область. Для решения данной проблемы существует множество систем и технологий, которые позволяют упростить укрепление и мониторинг системы даже не имея при этом богатого опыта работы с системами Linux и Windows [1].

Система предлагаемая в данной статье разработана при помощи математической модели и реализована на базе операционной системы Linux (имитируя серверную среду) используя технологию виртуализации docker, с графическим интерфейсом для упрощения укрепления и мониторинга системы начинающим пользователем или/и администраторам. Так как одной из больших проблем с которой сталкиваются начинающие администраторы это опознание стороны, с которой произойдёт атака, следовательно фактор виртуализации помогает правильно понять текущую проблему и вернуть состояние системы до изначального положения.

Так безопасность системы довольно тяжело описать, по причине существования множества факторов, которые влияют на производительность, способность выдержать

The Technical Scientific Conference of Undergraduate, Master, PhD students, Technical University of Moldova

высокую нагрузку, распределение привилегий и остальные внешние и внутренние переменные. Следовательно разработанная теоретическая и практическая модель приблизительно включает в себя множество основополагающих факторов безопасности системы. Как ранее упоминалось, кроме фактора виртуализации в данную систему входит изобилие вероятностей и коэффициентов, которые определяют общий коэффициент безопасности системы и затем используется в расчёте увеличенного значения общей сохранности архитектуры от возможной проводимой атаки. Следственно укрепление и мониторинг безопасности GNU Linux, используя графический интерфейс, упрощаются, а также в случае атаки будет сохранено текущее состояние контейнеров для дальнейшего анапиза.

Включая множество факторов безопасности и удобный для работы интерфейс, разработанная система позволит легче начать понимать такой глобальный вопрос как кибербезопасность и укрепление совместно с мониторингом системы GNU Linux.

Этапы исследования или как правильно понять кибербезопасность

Для проведения практического исследования мониторинга, тестирования, а также укрепления системы GNU Linux необходимо для начала произвести анализ существующих технологий, которые также или частично относятся к базовым понятиям самой системы Linux, так и произведения базовых операций по улучшения базовой защиты и мониторинга, что в свою очередь ссылает на исследование концепта безопасности в сфере операционных система на базе распределения прав доступа, проверка пакет проходящих через сеть, проверка аунтефицированных пользователей и изобилие сторонних и внутренних факторов. Следовательно в конечном итоге, после получения сведений о существующих продуктах, а также концептах безопасности, возможно использовать разработанное ПО (программное обеспечение) в целях безопасного тестирования с последующим восстановлением данных или защиты системы от наружнего вредоносного вмешательства. Также важно использовать именно системы с открытым кодом, что позволит лучше понять и начать адаптироваться под текущую среду GNU Linux.

При проведении анализа актуальности данной темы, можно получить высокие показатели числа кибератак проведённых по предыдущим годам, а также дальнейший прогноз увеличения различных типов атак по экспоненциально-линейной функции Рис 1., что соответственно доказывает большую роль укрепления и мониторинга установленной системы [2].

Рисунок 1. Статистика кибератак по всему миру с дальнейшей прогрессией

Такое растущее число кибератак связано с развитием облачных технологий и IOT, а также широкое распространения в инфраструктуре. Следовательно такие вид как DDOS,

Conferința Tehnico-Științifică a Studenților, Masteranzilor și Doctoranzilor, Universitatea Tehnică a Moldovei

MITM и Phishing встречаются всё больше и больше, в конечном итоге причиняя колоссальный вред, как в потере репутации, так и денежном аналоге.

Последовательным решением будет внедрение таких систем как Packet Sniffing Tool, хорошим вариантом в данном случае будет SolarWinds [3], а также Wireshark [4] как бесплатный аналог, далее систему предотвращения и обнаружения вторжений с открытым исходным кодом для анализа трафика в реальном времени и регистрацию файлов Snort, и более простым аналогом Fail2Ban [5]. Но большим минусом данных технологий является отдельная настройка и ограниченное использование в определённом функционале, что может вызвать сложность использования у новичков и начинающих администраторов. Большое преимущество архитектуры предлагаемой в данной статье это большой спектр функционала и простое управление при помощи графического интерфейса, с дополнительным технологиями для укрепления системы при помощи SELinux [6], а также мониторинга системой Prometheus [7] с графическим отображением при помощи Grafana [8]. Также большим преимуществом является изоляция от основной системы при помощи контейнеризации Docker, что добавляет дополнительный слой защиты поверх основной системы.

Использование инструментов и систем является главным шагом к пониманию безопасности системы GNU Linux, но также важно понимать, что существуют основные концепты укрепления системы безопасности, которые включают в себя 3 основных Первый принцип «Наименьших привилегий» указывает на правильное пункта. разделение системы на пользователей, а именно под определённый процесс изменяется право чтения, записи или исполнения, так как каждый процесс, системная запись или учётная запись получают доступ только к той части, в которой необходимо проводить дальнейшие действия. Второй принцип «Сегментация» используется при правильном распределении и применении памяти, а именно каждому процессу выделяется столько памяти сколько необходимо для реализации функционала, так как во время выполнения операций может произойти переполнение памяти или Buffer Overflow, что приведёт к неправильной адресации с последующим получением доступа к информации не предназначенной для данного процесса. Третий принцип «Сокращение» подразумевает удаление всех не использующихся или устарелых библиотек, программ и утилит, что помогает уменьшить вероятность появления уязвимости системы или проникновения с обходом систем безопасности. Применяя все три концепта на практике, возможно с большой вероятностью избежать дальнейших проблем связанных с уязвимостями и неправильным распределением памяти или системных записей [9]. Также в один из основных концептов также может входить «Постоянное обновление», что подразумевает обновление используемых программ или библиотек на новые версии/патчи, так как в более старых версиях могли обнаружиться уязвимости или эксплойты, которые в конечном итоге могут быть использованы для вымогательства денежных средств (Ransomware) или полного удаления данных.

Как начинающий исследователь кибербезопасности обязательно понимать, что данные концепты не просто как рекомендации, а необходимость для внедрения в систему. И после проведения исследования по укреплению, мониторингу и тестированию системы Linux, можно разработать собственную архитектуру на базы проектов с открытым исходным кодом, которая будет включать в себя вышеперечисленные концепты. Система которая описывается в данной статье имеет теоретическое закрепление, так и реализован концепт на практике, который показывает функциональное исполнение и применение виртуализации при помощи контейнеров и методов защиты от наружных и внутренних факторов во время тестирования.

The Technical Scientific Conference of Undergraduate, Master, PhD students, Technical University of Moldova

Математическая модель архитектуры как способ доказательства существования

Применяя ранее используемые концепты и общее описание системы укрепления, мониторинга и тестирования возможно получить архитектуру механизма усиления безопасности. Данная архитектура содержит в себе многие возможные вероятности, как отрицательного, так и положительного характера. Каждая вероятность исходит от общих технологий И концептов, которые могут применяться В каждой кибербезопасности. Также важным элементом является коэффициент, отвечающий важности вероятности в системе, так как конечные цели могут отличатся от системы к системе, следовательно, возможно применить базовые понятия логики Fuzzy, чтобы определить важность той или иной вероятности для каждого конкретного случая. Что в следствие может помочь в разработке и использовании нейронной сети совместно с антивирусной утилитой для получения общего балла состояния защиты текущей системы.

Как доказательство эффективности данной системы возможно вывести математическую модель, которая включает в себя большинство вероятностей происхождения тех или иных происшествий и действий. Коэффициент определения безопасности S, будет выглядеть следующим образом Puc. 2.:

S = K1 * P auth - K2 * P access + K3 * P detect + K4 * P firewall - K5 * P vulnerabilities + K6 * P incident response + K7 * P account management + K8 * P compliance

Рисунок 2. Коэффициент определения безопасности

Для получения коэффициента определения безопасности были включены многие вероятности происхождения тех или иных действий связанных с системой. Каждый коэффициент Кп получается при помощи логики Fuzzy [10], определяя важность каждой вероятности для конкретной системы, при этом значение коэффициента может варьироваться от 0.1 до 0.95 определяя приблизительное определения данного параметра в используемой системе. При этом данные обозначения расшифровываются следующим образом:

• P auth - вероятностью успешной аутентификации пользователя при попытке доступа к системе, следовательно Ec. (1):

$$P_{auth} = \frac{N_{auth}}{N_{total}} \tag{1}$$

где N auth - количество успешных попыток аутентификации, а N total - общее количество попыток аутентификации.

- P access вероятность успешного доступа к ресурсу.
- P detect вероятностью обнаружения атаки
- P firewall вероятность успешной блокировки сетевых атак
- P vulnerabilities вероятность успешной эксплуатации уязвимостей.
- P incident response эффективность реакции на безопасностные инциденты.
- P account_management эффективность управления учетными данными.
- P compliance степень соответствия стандартам безопасности.

Следовательно в конечном итоге получаем коэффициент содержащий сумму параметров относительно всех сторон безопасности, которые могут быть инициированы в каждой системе. Полученный коэффициент определяет безопасность системы GNU Linux, но чтобы добиться максимального значения необходим опыт работы и более глубокие познания самой операционный системы. Решением данной проблемы является использование математической модели проектируемой системы укрепления, мониторинга и тестирования. Так все вероятности входят в множество коэффициента S, то следственно разработанная система автоматизирует данные процессы и добавляет фактор виртуализации с встроенными политиками безопасности Ec (2).

$$C = S + K * SL + V_{container}(W + DB) + V_{container}(M)$$
 (2)

В конечном итоге практически реализованный концепт С, является суммой ранее представленных вероятностей с коэффициентами важности в связи с вероятностью срабатывания политики безопасности SL и коэффициентов срабатывания К (равный примерно 0.90), также добавление суммы вероятности уязвимости используемой технологии W (пример Apache [11]) и вероятности уязвимости технологии базы данных DB (пример MySQL[12]) под фактором виртуализации с помощью технологии контейнеров Vcontainer, с добавлением вероятности обнаружении пользователем аномалии M, также в виртуализованном пространсте.

Proof of Concept и «с чем его едят»

Кроме внедрения теоретической части, самым лучшим доказательством представляет себя практическая часть. Практическая часть включает в себя создание системы мониторинга для операционной системы, последующее внедрение модуля изменения политик функционирования с организацией архитектуры взаимодействия системы и как последний шаг тестирование. Весь концепт реализован на основе дистрибутива Debian с ядром Linux, используя технологию реверсивного прокси NGINX, систему виртуализации Docker [13], изменение политики безопасности Selinux, и язык программирования Python с библиотеками gunicorn и Flask. Последующее тестирование проведено в ином дистрибутиве в той же подсети KaliLinux [14] Рис. 3.

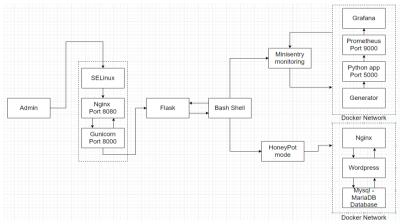


Рисунок 3. Архитектура системы MiniSentry

Работа концепта заключается виртуализации пространства работы технологий установленных на сервер. Тестирование проходило на технологии WordPress с базой данных MySQL, так как без должностной настройки данные технологии уязвимы для внешних атак. Следственно на первых рядах настроена система политик безопасности, что уже ограничивает доступ к системе не авторизованного пользователя. Далее в случае обхода firewall и политик безопасности атакующий попадает в изолированное начинает изменение встроенных технологий. активированная система мониторинга и режима «HoneyPot» фиксирует изменения в системе ранее не зарегистрированные, что в свою очередь подаёт сигнал на активацию защитного протокола. Происходит сохранение текущего состояния и затем блокируется IP адрес с которого была произведена атака. После система восстанавливает данные на основе заранее созданного backup, что приводит в действие механизм сохранение, выключение и повторного включения контейнеров. Заражённый или изменённый контейнер сохраняется для дальнейшего расследования.

The Technical Scientific Conference of Undergraduate, Master, PhD students, Technical University of Moldova

Выводы

Представляя данную модель для практического использования новичкам в кибербезопасности и начинающим администраторам, позволяет создать псевдолабораторию для экспериментов и автоматической защиты данных уязвимых технологий. Упрощая дальнейшее получения опыта в данной области с последующим поиском дополнительной информации. Включая множество аспектов укрепления, мониторинга и тестирования в одну структуру.

Благодарность.

При компановке данной статьи было потрачено довольно много времени на создание теоретического концепта, поэтому выражаю свою благодарность Морару Виктору, Карбуне Виорелу и Ротару Лилии за мотивацию и поддержку в написании данного материала.

Библиография.

- [1] V. Moraru, S, Moraru "Securitatea informațională ca o condiție a libertății" Revista de Filosofie, Sociologie și Științe Politice Numărul 1(164) / 2014 / ISSN 1957-2294
- [2] Infographic: Cybercrime Expected To Skyrocket in Coming Years». *Statista Daily Data* [Online]. Available: https://www.statista.com/chart/28878/expected-cost-of-cybercrime-until-2027.
- [3] *Observability and IT Management Platform | SolarWinds*. [Online]. Available: https://www.solarwinds.com/.
- [4] «Wireshark Go Deep». Wireshark [Online]. Available: http://localhost:3000/.
- [5] *Fail2ban | Русскоязычная документация по Ubuntu*. [Online]. Available: https://help.ubuntu.ru/wiki/fail2ban.
- (SELinux описание и особенности работы с системой. Часть 1». *Хабр* [Online]. Available: https://habr.com/ru/companies/kingservers/articles/209644/.
- [7] Prometheus. *Overview | Prometheus* [Online]. Available: https://prometheus.io/docs/introduction/overview/.
- [8] «Grafana | Query, Visualize, Alerting Observability Platform». *Grafana Labs*, [Online]. Available: https://grafana.com/grafana/.
- [9] *CentOS 5 Administration 43.2. Introduction to SELinux*. [Online]. Available: https://www.linuxtopia.org/online_books/centos5/centos5_administration_guide/centos5_ch-selinux.html.
- [10] «Нечеткая логика математические основы». *Loginom.ru* [Online]. Available: https://loginom.ru/blog/fuzzy-logic.
- [11] *Documentation Project The Apache HTTP Server Project*. [Online]. Available: https://httpd.apache.org/docs-project/.
- [12] Getting Started». *Oracle Help Center* [Online]. Available: https://docs.oracle.com/en-us/iaas/mysql-database/doc/getting-started.html.
- [13] «Home». Docker Documentation [Online]. Available: https://docs.docker.com/.
- [14] «Kali Docs | Kali Linux Documentation». *Kali Linux* [Online]. Available: https://www.kali.org/docs/.