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Abstract. Wind power has become more popular due to an increase in energy demand and the rapid decline in 

conventional fossil fuels. This paper addresses the rising demand for accurate short-term wind power forecasting, 

which is critical for minimizing the impacts on grid operations and reducing associated costs. The objective is to 

develop an innovative deep learning (DL) model that integrates a convolutional neural network (CNN) with a 

gated recurrent unit (GRU) to enhance forecasting precision for day-ahead applications. In pursuit of these 

objectives, the CNN GRU model was rigorously tested and compared against three additional models: CNN with 

bidirectional long short-term memory (BiLSTM), extreme gradient boosting (XGBoost), and random forest (RF). 

Key performance metrics—namely, mean absolute error (MAE), mean squared error (MSE), root mean squared 

error (RMSE), and the coefficient of determination (R²)—were employed to assess the efficacy of each model. 

Statistical validation was also performed using the Diebold-Mariano test to establish significant differences in 

performance. The most important results reveal that the CNN GRU model outperformed the other models, 

achieving a MAE of 0.2104 MW, an MSE of 0.1028 MW, an RMSE of 0.3206 MW, and an R² of 0.9768. These 
findings underscore the model's superior accuracy and reliability in the realm of short-term wind power 

forecasting. The significance of this research resides in its demonstration of the CNN GRU model as an effective 

and practical instrument for renewable energy forecasting.   
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O prognoză pe termen scurt a puterii energiei eoliene prin utilizarea învățării automate și a sistemelor 

hibride de Deep Learning 

Sunku V.S., Namboodiri V., Mukkamala R.B.  

Școala de Energie și Tehnologie Curată, Institutul Național de Management și Cercetare în Construcții, 
Hyderabad, India. 

Rezumat. Energia eoliană a devenit mai populară datorită creșterii cererii de energie și scăderii rapide a 
combustibililor fosili convenționali. Această lucrare abordează cererea în creștere pentru prognoza precisă a 
energiei eoliene pe termen scurt, care este esențială pentru minimizarea impactului asupra operațiunilor rețelei și 
reducerea costurilor asociate. Obiectivul este de a dezvolta un model inovator de învățare profundă (DL) care să 
integreze o rețea neuronală convoluțională (CNN) cu o unitate recurentă convoluțională (GRU) pentru a îmbunătăți 
precizia prognozei pentru aplicațiile de zi înainte. În urmărirea acestor obiective, modelul CNN GRU a fost testat 
riguros și comparat cu trei modele suplimentare: CNN cu memorie bidirecțională de lungă durată (BiLSTM), 
intensificare a gradientului extrem (XGBoost) și pădure aleatoare (RF). Valorile cheie de performanță - și anume 
eroarea medie absolută (MAE), eroarea medie pătratică (MSE), eroarea medie pătratică (RMSE) și coeficientul de 
determinare (R²) - au fost folosite pentru a evalua eficacitatea fiecărui model. Validarea statistică a fost efectuată 
și folosind testul Diebold-Mariano pentru a stabili diferențe semnificative de performanță. Cele mai importante 
rezultate arată că modelul CNN GRU a depășit celelalte modele, realizând un MAE de 0,2104 MW, un MSE de 
0,1028 MW, un RMSE de 0,3206 MW și un R² de 0,9768. Aceste constatări subliniază acuratețea și fiabilitatea 
superioară a modelului în domeniul prognozării energiei eoliene pe termen scurt. Semnificația acestei cercetări 
rezidă în demonstrarea modelului CNN GRU ca instrument eficient și practic pentru prognoza energiei 
regenerabile. 

Cuvinte-cheie: energie eoliană, prognoză, deep learning, energie regenerabilă, metrici de performanță. 
 

 

Краткосрочное прогнозирование ветровой энергии с использованием машинного обучения и 
гибридных систем глубокого обучения 

Сунку В.П., Намбоодири В., Муккамала Р.Б.  
Факультет энергетики и чистых технологий, Национальный институт управления строительством и 

исследованиями, Хайдарабад, Индия 

Аннотация. Ветроэнергетика стала более популярной из-за роста спроса на энергию и быстрого снижения 
традиционных ископаемых видов топлива. В этой статье рассматривается растущий спрос на точное 
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краткосрочное прогнозирование ветроэнергетики, что имеет решающее значение для минимизации 
воздействия на работу сети и снижения связанных с этим затрат. Цель состоит в разработке 
инновационной модели глубокого обучения (DL), которая интегрирует сверточную нейронную сеть (CNN) 

с управляемым рекуррентным блоком (GRU) для повышения точности прогнозирования для приложений 
на день вперед. Для достижения этих целей модель CNN GRU была тщательно протестирована и сравнена 
с тремя дополнительными моделями: CNN с двунаправленной долговременной краткосрочной памятью 
(BiLSTM), экстремальным градиентным бустингом (XGBoost) и случайным лесом (RF). Ключевые 
показатели производительности, а именно средняя абсолютная ошибка (MAE), средняя квадратичная 
ошибка (MSE), среднеквадратическая ошибка (RMSE) и коэффициент детерминации (R²), использовались 
для оценки эффективности каждой модели. Статистическая проверка также была выполнена с 
использованием теста Диболда-Мариано для установления существенных различий в 
производительности. Наиболее важные результаты показывают, что модель CNN GRU превзошла другие 
модели, достигнув MAE 0,2104 МВт, MSE 0,1028 МВт, RMSE 0,3206 МВт и R² 0,9768. Эти результаты 
подчеркивают превосходную точность и надежность модели в области краткосрочного прогнозирования 
ветроэнергетики. Значимость этого исследования заключается в демонстрации модели CNN GRU как 
эффективного и практичного инструмента для прогнозирования возобновляемой энергии. 
Ключевые слова: wind power, forecasting, deep learning, renewable energy, performance metrics. 

 
INTRODUCTION 

The use of renewable energy sources offers 

numerous advantages, not only in terms of energy 

generation but also in ecological preservation, en-

suring a sustainable future for generations to 

come. Among the various renewable energy 

sources, wind and solar power have attracted sig-

nificant attention and are expected to dominate 

the energy landscape soon. Renewable energy has 

a crucial advantage in its ability to minimize the 

release of greenhouse gases. By mitigating these 

emissions, the adverse effects of rising tempera-

tures can be avoided, which poses a serious threat 

to the planet. Therefore, the widespread adoption 

of wind and solar energy as renewable sources 

will undoubtedly help alleviate these conse-

quences. There has been a significant increase in 

the use of renewable energy, particularly wind en-

ergy, over the past few years. This sector has now 

become a crucial component of the global energy 

supply. This growth has been driven by rising en-

ergy demands, increasing fossil fuel prices, and 

the urgent need to reduce carbon dioxide emis-

sions. When considering the various renewable 

energy sources available globally, wind and solar 

energy are significantly more abundant compared 

to other options [1].  

Wind energy is considered one of the primary 

forms of renewable energy and is experiencing a 

significant increase in its utilization. In compari-

son to traditional power sources, India has a vast 

amount of wind energy reserves. Still, its genera-

tion is subject to the weather and geographical 

conditions, resulting in unpredictable patterns that 

are highly variable. Various factors such as wind 

speed, direction, ambient temperature, humidity, 

and altitude will affect wind power production. 

The significance of wind power as a prominent 

energy source in India is gradually increasing. 

With wind energy prediction, it is imperative to 

conduct thorough research to explore the possibil-

ities of leveraging this valuable resource [2]. Ac-

curately predicting wind power generation is cru-

cial for successful integration into the electrical 

grid. The main impediment to the growth of wind 

power integration in the power grid is the unpre-

dictable and variable nature of wind speeds. 

Achieving a delicate balance between power sup-

ply and demand is a significant challenge for dis-

tribution networks due to the constant fluctuations 

in wind power generation. As a result, accurately 

predicting wind power presents a significant chal-

lenge that can have a major impact on the efficient 

operation of power systems. Wind power genera-

tion is characterized by its stochastic nature, stem-

ming from the unpredictable and variable behav-

ior of wind. To minimize the uncertainty in the 

system caused by the variability of wind energy, 

it is crucial to develop more accurate and reliable 

forecasting models. These models can signifi-

cantly enhance the profitability of power plants by 

providing more precise output projections [3]. 

Furthermore, wind power prediction, using cut-

ting–edge algorithms, optimizes the integration of 

power generation with the electricity grid [4]. Re-

liable short-term wind power forecasting is cru-

cial for integrating wind power into the grid seam-

lessly and reducing the load on peak regulation 

and frequency control within the power system. 

[5]. The primary objective of wind power fore-

casting is to mitigate the inherent uncertainty as-

sociated with wind patterns, thereby enabling a 

greater degree of wind energy integration. It is 

also important for optimizing dispatch operations, 

planning maintenance activities, and determining 

the necessary operating equipment, among other 
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critical factors [6]. The varying weather patterns, 

particularly wind speed and direction, emphasize 

the need to address these obstacles. In the ongoing 

energy transition, wind power generation is 

emerging as a frontrunner. This is primarily due 

to its environmentally friendly nature and abun-

dance [7].  

Wind power forecasting can be categorized 

based on time horizons or the methodology used. 

Depending on different time frames, wind power 

forecasting can be classified as short-term and 

long-term. Improved results are achievable due to 

the advancement of state-of-the-art algorithms 

and the introduction of more sophisticated com-

putational methods. To overcome the intermittent 

characteristics of wind power and enhance the re-

liability of the power supply system, it is essential 

to secure reserve capacity. This reserve ensures a 

continuous power supply, even during periods 

when wind power is insufficient [8]. Neverthe-

less, the reserve capacity indirectly influences the 

overall expenditure, emphasizing the importance 

of employing an efficient forecasting strategy [9]. 

The accurate prediction of power output is crucial 

for developing a well-structured strategy that con-

siders the varying levels of power generation. 

This helps minimize the need for standby capacity 

in the power grid, resulting in lower operational 

costs for the power system [10]. Understanding 

the wind energy forecast is essential to meet the 

increasing demand for a reliable power supply for 

industries. Hence, accurate prediction of wind 

power generation has become a prominent focus 

of research in literature. To promote ecological 

development and meet the increasing demand for 

electricity, it is crucial to conduct research on pre-

dicting wind power generation. 

Previous research has shown that traditional 

statistical methods have been effectively used to 

forecast time series data in various applications. 

However, the existence of nonlinearity and 

irregularity in time series data, as well as the 

possibility of additional errors, can sometimes 

affect their suitability for predicting wind power 

output. The complexity of wind power generation 

is due to the influence of multiple variables, 

making it challenging to forecast accurately using 

any single model or approach [11]. Machine 

learning (ML) and deep learning (DL) 

frameworks can independently adapt and learn, 

making them ideal for efficiently managing the 

dynamic, non-linear, and complex attributes 

associated with wind power [12]. Achieving 

precise results with minimal errors in predicting 

wind power generation requires the use of various 

models and statistical tools. The feed-forward 

neural networks (FANN) were used to forecast 

daily average wind energy generation. The results 

demonstrate that neural networks are a viable 

solution for identifying patterns of energy 

estimation evolution [13]. The performance of 

regression trees in predicting wind power in 

distribution networks in Cyprus has been 

evaluated, resulting in a root mean square error of 

0.0242 [14]. The short-term wind power 

generation of a wind power plant in Pakistan was 

predicted using GRU and Autoregressive 

Integrated Moving Average models. The results 

indicated that the GRU model was the most 

effective among the others, showing high 

accuracy and minimal errors [1]. The comparison 

of Autoregressive Moving Average with 

multilayer perceptron feed-forward architecture 

and Adaptive Neuro-fuzzy Inference Systems 

(ANFIS) shows that artificial neural networks 

(ANNs) and ANFIS are effective for short-term 

wind power forecasting [15]. LSTM has been 

effectively used to enhance the reliability and 

accuracy of wind power generation forecasting 

through a multi-step predictive model [16]. 

Harrou et al. [17] proposed a variational 

autoencoder (VAE) with a self-attention model. 

The results show that the proposed model 

outperforms other models. Recently, ensemble-

based models also exhibited better prediction 

capabilities [18]. The LSTM and BiLSTM models 

have found extensive application in various 

domains, such as wind speed/power, solar power, 

solar irradiance, and electrical load forecasting. 

These models utilize historical data to make 

accurate predictions in these areas. The literature 

did not mention the use of hybrid models, 

particularly CNN GRU, in forecasting various 

parameters in the power sector. Thus need of 

performance improve models are essential and 

this motivates to conduct the present study. The 

present study aims to improve short-term wind 

power generation forecasting by improving the 

current cutting-edge prediction models. Deep 

learning models have been considered to achieve 

accurate short-term wind power forecasting. The 

present study proposes two DL frameworks for 

predicting the short-term day-ahead wind power 

generation in megawatts (MW) of an Indian wind 

power plant. These models are the CNN and Bi-

directional LSTM (Bi-LSTM) models, 

collectively referred to as the CNN BiLSTM 

model. Additionally, the CNN GRU architecture, 

referred to as CNN GRU, is also used to forecast 

the short-term day-ahead wind power generation 
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(MW). These frameworks aim to enhance 

efficiency and facilitate accurate data forecasting 

from a real-time environment. The proposed 

study is capable to implement in the wind farms 

for the wind power prediction applications. 

 

I. METHODOLOGY 

 DATA COLLECTION 

The importance of renewable energy cannot 

be overemphasized. One of the strategies em-

ployed by the Indian Government to promote this 

cause is the implementation of power exchange 

through the interstate transmission system. To 

gather information on short-term wind power gen-

eration, secondary data was collected from an in-

tegrated paper mill in India participating in this 

scheme. This paper mill is equipped with sixteen 

wind turbines, each capable of generating 2 MW 

of power, resulting in a total installed capacity of 

32 MW. The power generated by these wind tur-

bines is then supplied to the distribution compa-

nies of the respective state. The dataset consists of 

day-ahead wind power generation data in MW, 

recorded at 15-minute intervals, spanning from 

10/1/2016 to 10/20/2016. In total, there are 1920 

data points available for analysis [19]. The data 

was used for further analysis and integration with 

deep learning models. 

 

LSTM MODEL 

 LSTM networks, which are part of the recur-

rent neural networks (RNNs) category, enhance 

memory retrieval by preserving previous infor-

mation [20]. Using backpropagation for training 

improves the model's accuracy in predicting time 

series data with varying time delays. The LSTM 

model is specifically designed to address long-

term dependency problems and effectively over-

come the vanishing gradient problem. It is divided 

into three distinct sections. The opening section 

emphasizes the significance of data gathered in 

the previous period, establishing its relevance or 

potential for dismissal. In the following two sec-

tions, the focus is on integrating new data from 

the input and transferring the updated information 

from the current time step to the next time step. 

This is done while considering the LSTM cycle as 

a single time step.  

These three sections of the LSTM unit are re-

ferred to as the forget gate, input gate, and output 

gate.  

An LSTM network consists of memory cells 

that resemble individual layers of neurons in a 

conventional feedforward neural network. In this 

comparison, each neuron in the LSTM network 

contains both a hidden layer and an ongoing state. 

These gates effectively address the issue of van-

ishing gradient commonly encountered in RNNs, 

making LSTM networks widely utilized in vari-

ous time series prediction applications [21]. 

 

CNN BILSTM MODEL  

The BiLSTM architecture consists of two 

LSTM layers, with one processing data in a for-

ward direction and the other in a backward direc-

tion. Unlike traditional LSTM models that operate 

in only one direction, BiLSTM considers both 

preceding and succeeding data points. This ena-

bles a more comprehensive approach to decision-

making by leveraging historical and prospective 

information [22]. The model performs both for-

ward and backward computations, enabling a bi-

directional exchange of time series data. This ap-

proach contrasts with conventional models, where 

data moves linearly from the input layer to the 

hidden layer and then to the output layer [23]. Us-

ing the LSTM twice helps the model learn long-

term dependencies and improve accuracy [24].  

 

The CNN BiLSTM hybrid model combines 

the CNN, BiLSTM, and a connection layer; the 

model has been proposed to forecast the day 

ahead power generation (MW) of a wind power 

plant located in India. In this particular model, the 

input first goes through the CNN layer, where 

convolution operations and max-pooling are exe-

cuted, ultimately producing a newly generated 

feature matrix. The BiLSTM is fed with input 

from the feature matrix extracted from the CNN. 

The BiLSTM then produces its hidden output, 

which is directed through the connection layer 

consisting of a linear layer. Finally, the connec-

tion layer returns the ultimate results [25]. The hy-

brid model architecture is illustrated in Figure 1 

[23]. 

The interaction between input and output is 

explained by the hybrid model. A univariate time 

series forecasting model is constructed using a re-

cursive multi-step forecasting technique. To ac-

commodate the CNN input and output BiLSTMs, 

the univariate time series needs to be adjusted 

since the hybrid model employs supervised learn-

ing. When considering a univariate time series 

sample p(1), p(2), ..., p(n) with a lag, the projected 

value of p(є+1) can be obtained by following the 
previously outlined steps. Subsequently, the one-

dimensional vector is reconstructed into a matrix 
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with dimensions of (є+1), as demonstrated in 
Equation 1, which outlines the process of gen-

erating the reconstructed sample matrix, Θ. 
where  

(1) (2) ( ) ( 1)

(1) (1) (2) ( ) ( 1)

[ , ,..

[ , ,.. , )]

, ]P P P P

P P P P P

  

 




 

(1) 

The hybrid model uses a matrix R as its input, 

formed by the preceding τ column vectors 
     1 ,  2 ,  . . .,  P P P є   .The output, as depicted 

in Equation (1), is the (є + 1) value. Once the 
forecasting reaches step є + 1, the input vector 
encompasses all the anticipated values, indicating 

the successful completion of extrapolation [26]. 

The training process of the hybrid model for 

forecasting the day ahead power generation (MW) 

is outlined as follows: 

 Start by removing any unnecessary ele-

ments, converting time data into a serial-

ized format, and splitting the data into 

separate training and testing sets.  

 To begin the training process, the pre-

processed time series data must be input 

into the hybrid model. 

 Use the trained model to make predic-

tions by feeding it with the training data.  

 Apply the provided formulas to restore 

the predicted data.  

 A visual comparison should be created 

between the observed and forecasted val-

ues, using both datasets to evaluate the 

model's predictive accuracy. 

 

CNN GRU MODEL 

 Developed for complex data analysis, the CNN 

GRU architecture combines CNNs and GRUs to 

deliver powerful performance. This model stands 

out for its innovative approach of combining the 

spatial feature extraction capabilities of CNNs 

with the temporal dependency modeling abilities 

of GRUs, resulting in a powerful and effective so-

lution. The extraction of essential spatial features 

from input data sources is a crucial task in predict-

ing wind power generation, and CNNs play a vital 

role in achieving this. These attributes are seam-

lessly integrated into the GRU layer, which is 

well-known for its ability to capture temporal re-

lationships and historical capacity data. The over-

all architecture of the CNN GRU model proposed 

in this study consists of four key layers: the input 

layer, CNN layer, GRU layer, and output layer. 

The CNN layer begins by extracting information 

on day-ahead wind power generation. The pool-

ing layer uses convolution kernels to compute ad-

ditional feature data and expand the scope of the 

convolution results. Next, the preprocessed wind 

power generation data is inputted into the GRU 

network for optimization training through a fully 

connected layer. Within the GRU layer, the model 

effectively learns the underlying patterns and in-

ternal variability, which are essential for ensuring 

accurate predictions. The output layer ultimately 

produces important forecasts, providing valuable 

information on wind power generation. [27]. This 

architecture allows for precise predictions of wind 

power generation, which is advantageous for the 

power sector. Figure 2 depicts the structure of the 

hybrid prediction model using CNN GRU archi-

tecture. 

 

 

 

Fig. 1. CNN BiLSTM hybrid model architecture [25]. 
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Fig. 2. CNN GRU hybrid model architecture. 

II. PERFORMANCE METRICS 

The models' performance was evaluated using 

four main statistical metrics: mean absolute error 

(MAE), mean square error (MSE), root mean 

square error (RMSE), and coefficient of determi-

nation (R2), as outlined in Equations (2) to (5). 
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In power generation forecasting, the formula for 

calculating the error between the predicted and 

observed power generation values is as follows: F 

represents the expected power generation for a 
specific time interval (15 minutes), and O repre-
sents the observed power generation for the same 
interval. To further analyze the accuracy of the 
predictions, the average predicted power genera-
tion (F̅) and the average observed power genera-
tion (O̅) are calculated. The number of observa-
tions (n) is also taken into consideration. 

 

III. RESULTS AND DISCUSSION 

DATA PREPROCESSING  

  The preprocessing of data is a crucial step in 

developing short-term wind power predictions. 

Table 1 shows the statistical information of the 

dataset. This stage involves using important 

approaches to improve the quality of input data, 

which will have a direct influence on prediction 

accuracy. To ensure the continuity of data, the 

missing values are to be removed. Additionally, 

removing outliers, which are extreme data 

variations, enhances model performance by 

reducing undesirable noise during training. 

Normalization involves standardizing the 

variables to a common range between zero and 

one. The process of normalization is essential 

for preventing any single variable from 

dominating the model's learning process. This 

ultimately leads to more efficient model 

convergence and improved accuracy [28]. 

After preprocessing, it was determined that the 

dataset had no missing values. The data was 

then normalized using MinMax Scaler to a 

range of 0 to 1. After this, the preprocessed 

dataset was divided into training and testing 

sets. Out of the 1920 input points, 1527 (79.5%) 

were used for training, while the remaining 393 

(20.5%) were allocated for testing to evaluate 
the model's predictive performance.  

 

EXPERIMENTAL RESULTS OF CNN 

BILSTM AND CNN GRU MODELS 

 

The pre-processed data was used to analyse with 

the CNN BiLSTM model. The proposed model is 

a deep neural network and consists of two CNN 

layers in the first stage. The output from the CNN 

layers is then passed to the two Bi-LSTM layers 

in the second stage. These Bi-LSTM layers are 

responsible for analyzing information and 

predicting time series data. The final stage 

consists of two fully connected layers, which are 

used to generate the predicted wind power output. 

Number of hidden neurons are 31 and the total 

weight coefficients including biases are 5101. 
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Performance metrics are employed to evaluate the 

accuracy of the predicted values produced by the 

proposed model. To ensure a fair comparison, 

both the CNN BiLSTM and CNN GRU models 

are set up with identical model and training 

parameters. 
Table 1 

Details of the dataset. 

 

 

 

 

 

 

Fig.3. Learning curve of CNN GRU model. 

  

Fig. 4. Actual and predicted values of CNN GRU model. 

 

Count Minimum   Maximum Mean Standard deviation 

1920 0.00 31.48 8.356 8.435 
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Table 2 

Performance metrics of various models. 

Model MAE[MW] MSE[MW] RMSE[MW] R2 [-] 

Random forest 1.1907 1.9499 1.3964 0.7687 

XG Boost 0.7694 0.6759 0.8221 0.9156 

CNN GRU 0.2104 0.1028 0.3206 0.9768 

CNN BiLSTM 0.2725 0.1473 0.3838 0.9667 

To calculate the adaptive learning rate for 

parameters, the Adam optimizer considers the 

first and second moments of the gradient. A 

learning rate of 0.0001 is specified, and the MAE 

is chosen as the loss function. The MAE focuses 

only on the average absolute error of the predicted 

values, without taking direction into account, thus 

improving robustness against outliers. A batch 

size of 32 and a total of 50 epochs are selected for 

the experiment.  

The test dataset is employed for forecasting once 

the training process is completed. Figures 3 

exhibit the learning curve of the CNN GRU 

models, in predicting short-term wind power 

generation. The learning curve is constructed to 

assess the adequacy of the train and validation 

datasets in representing the domain area. The 

learning curves for both models indicate a 

satisfactory model fit, as the training and 

validation losses converge to a stable point with 

minimal disparity between their final loss values. 

Figure 4 illustrate the plot of the CNN GRU 

model, showing the relationship between the 

actual and predicted values over the last 350 data 

points. To analyze and compare the results of 

these models, several fundamental evaluation 

indicators, namely MAE, MSE, RMSE, and R2, 

are employed. The proposed model (CNN GRU) 

is compared with CNN BiLSTM, extreme 

gradient boosting (XGBoost), and random forest 

(RF). These indicators serve the purpose of 

determining the disparity between the predicted 

and actual values of short-term wind power 

generation. The values of these indicators can be 

found in Table 2. Notably, the R2 score of the 

CNN GRU model surpasses that of the CNN 

BiLSTM model, indicating a higher level of 

accuracy in predicting wind power generation. 

Furthermore, the CNN GRU model exhibits 

significantly lower scores in terms of MAE, MSE, 

and RMSE, further affirming the model's precise 

predictive capabilities. It is worth mentioning that 

the CNN GRU model demonstrated superior 

performance across all metrics when compared to 

CNN BiLSTM model. Moreover, the research 

presented a cutting-edge forecasting model 

utilizing the CNN GRU framework. This 

innovative model demonstrated a remarkable 

enhancement in the accuracy of short-term wind 

power generation prediction, surpassing the 

performance of the CNN BiLSTM model. The 

proposed CNN GRU model, with its exceptional 

predictive power, signifies fair progress in the 

domain of renewable energy.  

CNN GRU model surpasses in capturing 

prolonged dependencies in sequential data, 

adeptly adjusts to diverse operational scenarios, 

and consistently exceptional in evaluating the 

performance criteria [27]. These attributes 

collectively establish it as the better option for the 

renewable energy sector, which seeks reliable and 

precise planning as well as grid management. 

When compared to alternative machine learning 

models, the CNN GRU unified framework 

excelled in short-term residential load forecasting 

by achieving the lowest error rate, with MSE, 

RMSE, and MAE values of 0.09, 0.31, and 0.24, 

respectively [29]. The CNN GRU model's 

learning curve demonstrates a satisfactory model 

fit, indicating the absence of both overfitting and 

underfitting. The performance of the CNN GRU 

model was then compared with five other DL 

models. In both scenarios, the CNN GRU model 

demonstrated superior performance, achieving 

the lowest values for the performance criteria 

[30].  

The CNN GRU model has the ability to undergo 

training and application in conjunction with 

various other factors that affect the production of 

wind energy. The Diebold-Mariano test is 

performed for CNN GRU and CNN BiLSTM. 

The p-value is 0.0025 and indicates that the 

performance of CNN GRU is significant as 

compared to CNN BiLSTM.  
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CONCLUSION 

The current investigation outlines the primary 

viewpoints and significant numerical findings 

derived from the study into forecasting short-term 

wind power generation. The significance of the 

study is implementing a novel DL that effectively 

combines CNN and GRU framework. Moreover, 

the CNN GRU model surpasses the CNN 

BiLSTM model in terms of performance. The 

model's efficacy was substantiated through 

rigorous experiments, resulting in a significant 

decline in key performance metrics. In the current 

study, the proposed methodology exhibited 

exceptional precision in forecasting and surpassed 

the performance of the CNN BiLSTM model. 

This was substantiated by the values of MAE, 

MSE, RMSE, and R2, which were recorded as 

0.2104 MW, 0.1028 MW, 0.3206 MW, and 

0.9768 respectively, highlighting its outstanding 

performance. To enhance the efficiency of the 

model in predicting short-term wind power 

generation, it is advisable to integrate various 

factors such as wind speed, direction, altitude, and 

other operational dimensions. Additionally, 

comparing the outcomes of power output 

prediction using both multi and univariate data 

would be beneficial. Furthermore, training the 

model on a larger and more varied database would 

enhance its reliability. The CNN GRU model 

demonstrates superior performance when 

compared to other models, thus affirming its 

viability for practical implementation in the 

renewable energy sector. 
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