
International Conference on Nanotechnologies and Biomedical Engineering, Chişinău, Republic of Moldova, 7-8th of July, 2011 

 

         373 

 

I. INTRODUCTION 

The brain behavior is still unknown and lately a lot of 

efforts are done to reveal i) its anatomical connectivity (AC), 

determined by the anatomical links, ii) its functional 

connectivity (FC) obtained when analyzing the statistical 

dependencies among the EEG signals, or iii) its effective 

brain connectivity (EC), which represents the instantaneous 

information flow within the brain [1]. The effective 

connectivity is to be extracted in time or in frequency 

domain, by using the Granger Causality Index or the Partial 

Directed Coherence. Both methods need a good EEG 

channel selection in order to have a high performance. The 

EEG channel selection is usually done after a deep channel 

analysis, in time and/or frequency domain, after 

investigating the functional connectivity. The current study 

shows a typical EEG signal processing when investigating 

the EEG effective connectivity. 

 

II. DATA DESCRIPTION 

The EEG dataset consist of EEG segments lasting for 7 

s, recorded during a tongue motor imagery task. The first 2 s 

are used to extract the EEG characteristics corresponding to 

the resting state, before the stimuli are applied. A beep 

fixation cross makes the subjects concentrate on the EEG 

task; it lasts on the screen for 1 s. An arrow appears then, 

indicating the subjects to imagine the motor task, during a 

period of 4 s (Fig. 1) [2]. 

 
Fig. 1. Paradigm description 

III. SIGNAL PROCESSING METHODS 

Most of the EEG studies analyze the signal behavior in 

time or in frequency domain, when considering some 

particular stimuli that generate the Event-Related Potential 

(ERP). Since the non-stationary EEG signal has a low 

amplitude, decreasing exponentially with frequency, the 

time-domain analysis consists in averaging the 

corresponding EEG segments, which allows the localization 

of paradigms (i.e. P300, or P3 represents a positive peak in 

ERP). 

The frequency-domain analysis usually investigates the 

variations of the spectral components, relatively to a period 

of relaxation, when the ERP is supposed not to be relevant (a 

short period before the stimulus application). The most 

applied frequency-domain methods are: the Event Related 

Spectral Perturbation, the Inter-Trial Phase Coherence, the 

Inter-Trial Linear Coherence and the Event Related Cross- 

Coherence. 

Event Related Spectral Perturbation (ERSP) 

The event related spectral perturbation allows scientist to 

observe when the spectral components are (much) reduced 

after a certain event, which is reported in literature as Event-

Related Desynchronization (ERD) or to notice whether the 

neurons are getting synchronized, generating some 

additional frequency components, which is known as Event-

Related Synchronization (ERS) [3]. 

The method performs an average over all the similar trials, 

in frequency-domain, to get the information relevant for the 

analyzed EEG task: 
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where n represents the number of EEG segments, Fk(f,t) is 

the spectral component at frequency f, computed at time t, 

for the k-th analyzed EEG segment. Fk(f,t) can be computed 

by applying the Short-Time-Fourier Transform (STFT) and 

Wavelet Transform. 

Inter-Trial Phase Coherence (ITPC) 

The Inter-Trial Phase Coherence (ITPC) reveals the phase 

synchronization, relatively to the resting state, when 

considering different trials: 
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When the phase coherence is determined based on the 

spectrum averaging, normalized by the averaged spectrum, 

we get the Inter-Trial Linear Coherence: 
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Event Related Cross- Coherence (ERCOH) 

Event Related Phase Cross-Coherence (ERCOH) 

determines the relation between two different event types, by 

analyzing the phase of the corresponding computed spectra.  
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When the averaging doesn‘t include the normalization, 

which extracts only the phase, the Event Related Linear 

Cross-Coherence (ERLCOH) is computed: 
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Independent Component Analysis (ICA) 

ICA extracts the components that are not only 

decorrelated but also independent. It considers the 

computation of higher order moments (3
rd

 and 4
th

 moment) 

and is suitable for signals that have no more than one 

Gaussian component [4]. The algorithm is briefly described 

in the figure bellow: 

 
Fig. 2. ICA model - BSS extraction of p signals 

ICA extracts the signal sources by applying the matrix 

inverse: 

xAs
1  (6) 

Two of the most representative ICA algorithms reported 

in the literature are: i) the one developed by J. F. Cardoso 

and Antoine Souloumiac, JADE (joint approximate 

diagonalization of eigen-matrices) (Cardoso & Souloumiac, 

1993); ii) FastICA, developed by Hyvärinen; it is based on a 

fixed-point iteration scheme maximizing non-Gaussianity as 

a measure of statistical independence. The idea of ICA is to 

extract the vector sources, s, with q components, from the 

recorded vector x, including p channels: 

nAsx   (7) 

A is the mixing matrix, n represents the additive noise. 

The following assumptions must be met in order to apply 

ICA: 

1. A has linear independent columns (satisfied for real 

signals usually) 

2. x contains independent variables 

3. n and x are independent. 

Under these assumptions the mixing matrix can be 

estimated and the sources are extracted: 

xAss
1ˆˆ   (8) 

ICA (JADE)  

It is the most applied ICA algorithm and uses the fourth 

cumulant to compute the kurtosis. The steps of the algorithm 

are: 

1. Initialization (data whitening):  
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2. Computation of the Kurtosis for ŷ ; the set of the 

fourth cumulants,  y
iQ , is obtained. 

3. Optimize an orthogonal contrast: the matrix V has 

to be estimated so that the contrast function is minimized: 
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where  Aoff  are the nondiagonal elements: 
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The matrix V is computed using the Jacobian. 

4. Mixing matrix estimation: 

VWA
Tˆ  

5. The extraction of the independent components: 

WxVyVss TT  ˆ
 

 

IV. EFFECTIVE CONNECTIVITY DETECTION 

The effective connectivity can be estimated based on the 

linear multivariate auto-regressive model. When the model 

parameters are time-varying, the Granger Causality Index 

and the Partial Directed Coherence are time-variant; 

otherwise, they are computed as time-invariant measures of 

effective connectivity. 

Granger Causality Index 

Let us consider the full MVAR(p) model with regard to y 

with time-dependent parameters and with the prediction 

error: 
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The reduced MVAR(p) model is so: 
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with: 
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Multivariate Time-variant Granger Causality (MVAR 

tvGCI) from i to j is defined by: 
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When only pairs of signals are considered, we have 

the Bivariate Time-Variant Granger Causality Index (BIV 

tvGCI). 

Partial Directed Coherence 

The PDS is evaluated by: 
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The performance in EC estimation depends mainly on 

improving the parameter estimation for the group EC 

analysis. 

V. RESULTS AND DISCUSSIONS 

Figure 3 shows the ERD starting at 1.5 s after the stimulus 

application, in the beta frequency band. An ERS appears just 

after the stimuli application, at about 0.5 s, in alpha band. 

The ITC has no relevant information for the analyzed motor 

imagery task. Even when the ICA is applied, the ITC is not 

relevant for the study (see Fig. 4). Contrary, ICA improves 

the EEG analysis in frequency domain, when considering the 

ERSP (see Fig. 5). 

The ERP is presented in Fig. 6, for all the analyzed trials. 

The spectral maps for different spectral components are 

shown in Fig. 7. 
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Fig. 3. ERSP (up) and ITC (down), for channel C6, analyzed during the 

tongue motor imagery task. The ERD/ERS is to be noticed at about 30 Hz/ 

10 Hz. 

Figure 8 presents the variation of the EEG maps in time. 

The effective connectivity, shown in Fig. 9, reveals an 

effective connection from channel 5 to the others, by 

applying the tvGCI. When the signal is assumed to be 

stationary (the time-invariant PDC), which is not correctly 

describing the analyzed EEG signal, no connection is 

identified. 
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Fig. 4. ERPCOH for the 1st and 2nd ICA components. 

 

Fig. 5. ERSP and ITC of the 6th and 7th ICA components, when considering 

the tongue motor imagery task 

 
Fig. 6. ERP for all trials (Channel 28 – C5) 

 

Fig. 7. Pseudocolor spectral maps for different frequency bands. 
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Fig. 8. The variation of pseudocolor spectrum maps in time (tongue motor 
imagery task) 

a) 

b) 

Fig. 9. Estimation of EEG effective connectivity: a) tv-GCI; b) PDC 
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