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Abstract. The electrical circuit structure includes components with concentrated and 
distributed parameters. This creates difficulties in analyzing the dynamic processes, which 
are described by differential equations, including those with partial derivations. This paper 
deals with the process of applying equations with partial derivatives (telegraph equations) 
for the analysis of transient processes using the numerical method of uninterrupted 
computation. The initial and limit conditions needed to obtain numerical solutions of the 
transient processes in circuits with the complex variable load have been formulated. The 
original calculation procedure of the nonstationary regime has been proposed using the 
finite difference method. The calculation method uses the Riemann invariants. The 
electrical circuit with lumped parameters includes active resistance, inductance and 
capacitance. The relative units system was used for the analysis and the procedure of 
transformation the dimensional parameters among the nondimensional parameters into 
the relative units system was proposed. The continuous energy storage regime in the ideal 
inductance in the moving wave regime at the connection of the line end with distributed 
parameters at the ideal inductance (without losses) with lumped parameters was found. 

 

Keywords: circuit, concentrated and distributed parameters, initial and limit conditions, 
mathematical model, telegraph equations. 

 

Introduction 
 Electric lines are the basic functional elements of modern power systems with the 
electrical energy. In these elements phenomena and propagation regimes of the voltage 
and current waves are manifested [1, 2], which can be conditioned both by internal and 
external factors. Wave phenomena occur most frequently in high voltage transmission lines 
which are of extensive lengths [3]. The propagating wave phenomena can also be seen in 
short electric lines in the form of transient regimes. These are conditioned by the internal 
(switching, load jumping, short-circuiting) [4] and external factors (atmospheric discharges 
[5, 6], geomagnetic interference [7]). 
 The propagation velocity of electromagnetic excitations is high and has the value 
close to that of the speed of light. This peculiarity creates difficulties for the experimental 
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observation of the dynamic process in the initial stage of the transitional process, which has 
the multi-reflective propagation wave mechanism. The reflection effects of the incident 
waves are conditioned by the existence of nonhomogeneities in the circuits with distributed 
parameters. The electrodynamic processes, perceived as transient, can seriously damage the 
power systems by suspending the electricity supplies. The high speed of movement, the 
nonhomogeneities of the structure of the actual electrical circuits create difficulties for the 
theoretical analysis of the rapid processes in the electrical circuits. The theoretical 
calculation both of the permanent and dynamic (transient) regimes in the electrical 
networks with multiple nonhomogeneities comes across many difficulties. These difficulties 
are conditioned both by the topological features and the variety of parameter values at the 
analyzed circuits, as well as the difficulties of using the known calculation methods. 

 

1. Formulation of the Problem within the Study 
The nonhomogeneity of the electrical circuit results from the arbitrary intermediate 

connection of the lumped-parameter load with the electrical network and, at present, at the 
connection of electricity generation distributed sources with the supply network, inclusive 
of the renewable energy sources. These peculiarities lead to the need of adapting the 
equivalent schemes of the analyzed circuits, to the requirements determined by the 
methods (analytical or numerical) selected to solve the formulated problems. As a 
reasonable solution, the decomposition of the nonhomogeneous calculation scheme 
structure into parts with homogeneous properties, the formulation of the boundary 
conditions and initial conditions at the boundaries of the circuit portions, being considered 
as homogeneous portions, is used. 

In this context, the nonhomogeneous circuit with distributed parameters can be 
presented in the form of a homogeneous circuit located between the points with large 
gradient changes of the line parameter values or jump changes of the values of the loads 
with lumped parameters. The essential changes in current and voltage values in different 
portions of the circuit can also be conditioned by the energy portions injected in the circuit 
under the influence of external phenomena, for example, the evolution in time of the 
electrical and/or magnetic field intensity outside the circuit. Thus, the problem of 
calculating and analyzing the dynamic regime in non-homogeneous circuits is complex and 
is a non-trivial task. 

In circuits with the distributed parameter, voltage and current values in different 
circuit sections depend on the values of the leakage capacitive and active currents into the 
ground. As a result of these peculiarities, for the description of the processes in this type of 
circuits, we use the equations with partial derivatives (telegraph equations) which are 
completed with initial and boundary conditions. 

The purpose of this paper is to elucidate the possibilities of the finite difference 
method for the analysis of transient regime evolution peculiarities and wave’s propagation 
in the nonhomogeneous electrical lines with distributed parameters. 

 

2. Basic Equations of the Circuit with Distributed Parameters 
The differential equations with partial derivatives are used for elaboration of various 

mathematical models of physical objects [8], including the energetic domain [9, 10]. Using 
mathematical models makes it possible to solve multiple applied problems in the field of 
technology through mathematical simulations [5, 8, 10]. 
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The complex character of the transient processes and the wave processes in the non-
homogeneous electric circuits directly influence the selection and applying of the methods 
of analysis of these dynamic processes. The peculiarities of the calculation procedure are 
manifested by the fact that the separate examination in time of the transitional and 
stationary regimes is used. The procedure is used whereby the electrical circuits of the 
supply system are most often presented by equivalent schemes with the lumped parameters 
[11, 12]. 

The development of computers and software allows a new approach to the problem 
of regime research in circuits with lumped and distributed parameters compared to the 
known classical methods, which have a long history of use [10, 13, 14]. 

 

2.1. The Mathematical Model of the Homogeneous Line 
The power source (generator), load (receiver) and the connection circuit (power line) 

of the source with the load are the main functional components of an electrical power 
system. The equivalent diagram of an electrical power supply circuit is shown in Figure 1. 
The source of generation and the load are connected via the electric transmission line with 
distributed parameters (L, C, R, G). 

 

Figure 1. Equivalent scheme of a circuit with distributed parameters L, R, C, G (line length l) 
and load with lumped parameters RS, LS, CS with voltage source E. 

 

Generally, the processes in the electrical line are described by equations with partial 
derivatives, which in the electric lines theory are referred to as the "telegraph equations": 

 

   0;  0;
du di di du

L Ri C Gu
dx dt dt dt

         (1) 

 

where for linear circuits, the coefficients L, R, C, G are with the constant value. These 
coefficients are defined as follows: L is the inductance of the loop formed by the line 
conductor and the conductor for the return current from the load to the source of 
generation; R is the active longitudinal resistance of the direct conductor; C, G are the 
capacity and active conductivity of the insulation between the conductor of the circuit and 
the ground. 

The term "telegraph equations" is derived from the "l'equation des telegraphistes", 
which was suggested by A. Poincaré in 1897. 

To obtain the unique solution Eq. (1) has to be filled in with initial and limit 
conditions. The linear electric circuit, which is shown in Fig.1, at t = 0 is connected to the 
external source E with the arbitrary voltage form: 
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 )(tUu 0  for 0x ,  (2) 
 

and the output (end) of the line is connected to an active-reactive load presented by the 
RLC circuit: 

 

 
0

1
( )

t

S S S S
S

di
u R i L i d

dt C
     , when x l ,  (3) 

 

where U0 is the voltage at the input terminals of the circuit with distributed parameters. If 
the power supply E an ideal source (the internal impedance of the source is zero) is met 
under the condition E = U0; RS; LS, CS are the lumped parameters of the load; L, R, C, G are the 
values of the distributed parameters of the line; uS is the voltage drop on the load; iS is the 
load current. The limit regimes for these circuits are the idle mode (IM) and the short-circuit 
(SC) mode. These boundary marginal conditions correspond to the load impedance values ZS 
for the idle regime ( SZ  ) and for the short circuit regime ( 0SZ  ). These factors also 
indicate the complexity of defining the value of ZS of the load, even in the case of a 
homogeneous circuit with distributed parameters. Short circuit regime (SC) and idle regime 
(IM) can be referred to as the edge limits (or degraded regimes) of the circuit. The SC and IM 
regimes are not considered as the working regimes of the circuit, but they are useful to be 
studied as an intermediate step towards the working regimes of the circuits, when the load 
is modified within the limits of 0 SZ   . Most often, the initial conditions are considered 
to be null (up to the circuit switching with no electrical charge). Connecting the loads at the 
intermediate points of line (e.g., x = xn), the connection of the reactive power compensation 
devices and other equipment to ensure the transmission regime, the currents and voltages 
as functions of the space variable x can change values by jump at these points of the line. 

It is noteworthy that the circuit described by the integral-differential of Eq. (1) can be 
connected to the line in any place and to ensure structural homogeneity, and the same 
unique procedure for defining the boundary conditions, the current and voltage through the 
circuit can be written  as i = i1 - i2 and u = u1 - u2, where the indices of the currents i1, i2 and 
the stresses u1, u2 correspond to the values of these functions on the left (index 1) and right 
(index 2) of the connection point of the RLC circuit or of the sources of distributed energy to 
the line. The load described by Eq. (3) can be represented by the equivalent circuits to the 
formulation of the limit conditions at the point of connection to the line with distributed 
parameters (using the concept of decomposition and equation of the circuit portions). In 
this case, the boundary conditions become more complex than the definition form, but the 
requirement remains that these RLC circuits are linear circuits, because only upon this 
condition there will be the unique solution of the system of equations describing the circuit 
under study. 

Starting from general theory [15] and referring to Eq. (1), it makes possible to obtain 
the expression for the integral of energy, which is based on the law of conservation of 
energy: 

 

 2 2 0;
i u u i

Li i Ri Cu u Gu
t x t x

   
     

   
2 2 2 21

( ) ( ) 0.
2

Li Cu Ri Gu iu
x


    


∂
∂

 (4) 
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The integration of Eq. (4) into the definition domain 0 x l   and time interval 
0 t   , taking into account the initial zero conditions, enables us to obtain the following 
equation: 

 

 2 2 2 2

0 0 0 0

1
( ) ( ) [ (0, ) (0, ) ( , ) ( , ) ] .

2

t l l t

Ri Gu dxd Li Cu dx i u i l u l d              (5) 

 

Equation (5) shows the energy balance of the analyzed circuit. The left-hand side of 
Eq. (5) is the sum of the active power component in the circuits with  distributed parameters 
(irreversible transformations) and of the reactive power component (reversible energy 
transformations).The irreversible transformation shows the energy losses in the longitudinal 
active resistivity Rl = R l and in the active conductivity Gl = G l-1 of the insulation of the line 
portion with the length l  which turns into heat. The reversible component is determined by 
capacity Cl = C l and line inductance Ll = L l. The reversible component is the share of the 
electrical energy, which, consequently, with a double frequency (over a period of the 
alternating current) is accumulated in the electric field, and then in the magnetic field of 
the circuit with distributed parameters. The right-hand side of Eq. (5) represents the 
difference between energy supplied in line and the energy absorbed by the load connected 
with this line. 

All components of Eq. (5) are designated in J (joule) units. It is obvious that for the 
initial and boundary zero conditions, the integral of Eq. (5) is valid only for the trivial 
solution. Thus, the theorem of uniqueness results from Fredholm's alternative, which is 
based on the hypothesis of the existence of the solution for the examined equations [10]. 

 

2.2. The Telegraph Equations and Maxwell equations 
The telegraph equations adapted for the analysis of the dynamic process in the 

circuits with distributed parameters were obtained as a result of solving the telephony 
problem and, therefore, of transmitting electrical signals over long distances. These 
equations were obtained by examining a closed loop with the right length dx [16]. 

Equation (1) can be represented as the relationships, which include only one 
unknown variable, i.e., the current or voltage [17]: 

 

 

2 2

2 2

2 2

2 2

( ) ;

( ) .

i i i
LC LG RC RGi

x t t

u u u
LC LG RC RGu

x t t
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   

  
  

   
  

 (6) 

 

The telegraph equations are derived from the Maxwell equations [18] used in 
electrodynamics: 

 

 

2 2 2 2

0 02 2 2 2

2 2 2 2

0 02 2 2 2

;

,

E E E E

x y z t

H H H H

x y z t

 

 
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  

   

   
  
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   

     (7) 

where, ,E H
 

 are the vectors of the intensity of the electrical field and the magnetic field; 

0 0,  are the magnetic and dielectric permeability constants; x, y, z are the spatial 
coordinates; and t is time. 
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Comparison of Eq. (6) and Eq. (7) indicates that the telegraph equations are 
approximate mathematical expressions because they do not take into account the 
electromagnetic oscillations around the conductor. This observation, which refers to 
similarity of Eq. (6) and Eq. (7), allows us to apply the known solutions (obtained in the 18-
th century by the mathematicians D. Bernoulli, J. D'Alembert and L. Euler) as the structure 
equation of the following type: 

 

 
2 2

2
2 2

.
f f

a
x t

 


 
 (8) 

 

Equation (8) describes the oscillation process in the rope. This solution presents the 
function as the process of propagation of two arbitrary shapes of waves moving in space in 
the opposite directions with the velocity a: 

 

 1 2( , ) ( ) ( ).f x t f x at f x at     (9) 
 

Equation 9 shows the essence of the Method of Characteristics for solving equations 
with partial derivatives applied to obtain solutions of the first-order equations with partial 
derivatives. However, it also can be used to solve the hyperbolic equations of a higher 
order. This method consists in reducing the differential equation with partial derivatives to 
a family of ordinary differential equations. To use this method it is necessary to determine 
some curves (hereinafter the term is referred to characteristics) along which the differential 
derivative of the equation with partial derivatives is transformed into an ordinary 
differential equation. Thus, the ordinary differential equations can be obtained. The 
solutions for those equations are known to be the ones in the direction of the straight lines 
that we call features. The solution found can be transformed into a solution of the initial 
equation with the partial derivative. 

 

2.3. Report on Characteristics 
The nonhomogeneities of the electrical circuit lead to difficulties in the use of 

calculation methods, including the characteristic methods. The effects of energy dissipation 
in the circuit (energy losses) also cause difficulties for the realization of the wave process 
calculations. At present, the efficiency of the electricity transmission was found to be 97%. 
It is reasonable to use the finite difference method for the dynamic process of calculation in 
long lines, because the latter are very close to the ideal (lossless) circuits. Based on this 
hypothesis, Eq. (1) can be simplified (since R = G = 0), as follows: 

 

 ;
u i i u

L C
x t x t

   
   
   

. (10) 

 

Equation (10) can be reduced to relations with a single variable by way of 

multiplying the first equations by the coefficient L

C
: 

 0.
C u i

LC
L dx dt

 
   (11) 

 

By adding the second equation of Eq. (10) to Eq. (11), and by subtracting Eq. (11) 
from Eq. (10), after transforming these relations we obtain the following expressions:  
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1
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1
0.

C C
i u i u

x tLC LC LC

C C
i u i u

x tLC LC LC

              
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 (12) 

 

The components of Eq. (12) will be as follows: 
C

I i u
LC

    and 
C

I i u
LC

   . 

Equation (12) is transformed as follows: 
 

 
1 1

0; 0.
I I I I

x t x tLC LC

      
   

   
 (13) 

 

Because 
1

a
LC

 , relations of Eq.(13) will be transcribed as following: 

 

 0; 0.
I I I I

a a
x t x t

      
   

   
 (14) 

 

Equation (14) consists of two independent differential equations, which contain only 
one unknown function  ,I x t  and  ,I x t . This system belongs to the hyperbole 

differential equation class. 
The solutions of the differential equations of this system are the following [19]: 

 

       , ; , .I x t f x at I x t f x at        
 

If we replace the functions  ,I x t  and  ,I x t by the values u and i, we shall obtain: 
 

    ; .i aCu f x at i aCu f x at        (15) 
 

Equation (15) allows us to determine the values of the unknown functions i and u 
from  Eq. (10): 

 

        
; .

2 2

f x at f x at f x at f x at
i u

aC

        
    (16) 

 

The straight lines corresponding to the functions x at const   and x at const   in 
the plane of the variables x-t are referred to as the characteristics of Eq. (14) [19]. For t = 0 
the x values of the linear equations become equal to the respective constants 0tx

  and 0tx
 . 

Within the range x x x   , a set of straight lines can be drawn that differ only by the 
values of the constants of their equations. These constants are identifiers of the straight 
lines and can be used as the "number" of identification for these straight lines. According to 
this property the value of the function  ,I x t  or  ,I x t r in the point (x, t) depends only 

on the "number" of the straight line on which that point is located [19]. In this regard, the 
function x at  displays a number of the respective straight lines. 

From Eq. (14), it follows that the functions  ,I x t  and  ,I x t  in the direction 

x at  of the straight lines have constant values. From the initial conditions we know the 



52 V. Berzan  

Journal of Engineering Science  December, 2019, Vol. XXVI (4) 

values of the functions i and u in the range of x x x    for t = 0. When fulfilling these 
conditions, the solution of Eq. (10) is uniquely determined within the triangle, one side of 
which coincides with the interval  ;x x  . This triangle is analytically determined by the 

relationships: t > 0, ,x at ax x at x     , and is called the characteristic triangle. 
The function i aC u  is referred to as the Riemann invariants. The physical sense of 

the solution presented by the relationship  i aCu f x at    consists in that it indicates 

the distribution of the Riemann invariance, which propagates without deformation in the 
direction of the straight line x at  with velocity a. Similarly, the expression 

 i aCu f x at    indicates that the second invariant distribution is placed without 

deformation to the left in the right-hand direction x at  with velocity a. So, by passing 
consequently all the points in the range of x x x   , we obtain the values of all the 
solutions within the characteristic triangle. The Riemann invariants are also referred to as 
the report on characteristics. Obviously, the value of this constant ratio in the direction of 
the characteristics is determined only by the number of the characteristics. 

The characteristic triangle formed by the Riemann invariants, which is used to obtain 
the numerical solution of the linear system with partial derivatives for the portion of the 
electric line with length l is shown in Figure 2. 

This portion is divided into N elementary fractions. For the linear circuit with length l 
with homogeneous structure, three groups of specific points can be pointed out. These are 
the points 0 , Nx x  at the ends of the circuit, with the values 0 0x   and Nx l , and a set of 
intermediate points in the range of 0 nx l  . 

Figure 2. Characteristic triangle for the long line divided into N elementary portions.
 

2.4. Parameters in the relative units system 
The variety of constructive solutions for designing electrical lines, as well as the 

wide range of load change of these lines, creates difficulties in analyzing their operating 
regimes.  

In order to generalize the results of the calculations of the lines with distributed 
parameters, it is reasonable to present the values of the parameters of the equivalent 
scheme of the circuits analyzed in the system of the relative units. In order to achieve this 
idea it is necessary to select the basic parameters of the analyzed circuit.  

As basic parameters it is proposed to use the length of the portion of the circuit with 
distributed parameters (l), the nominal circuit voltage ( nomU ), the longitudinal inductance  
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( lL ), the transverse capacitance ( ),lC and characteristic impedance  LCZ L C . Absolute 

values of the inductance and capacitance of the circuit with distributed parameters are 
calculated using the formulas lL L l   and lC C l  . 

The values of the parameters of the examined circuit of Figure 1 in relative units are 
calculated using the following relations: 

 

 

0 0 0 0

0 0 0 0 0

0 0 0 0 0

( )( )
( ) ; ( ) ; ; ;

1; 1; 1/ 1

; ; ; ;

 ;

.

LC
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S S S
LC S S S
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i t Zu t t a x
u t i t t x

U U l l

L l C l
L C a L C

L C

R L CR l
R G G l Z R L C

Z Z L l C l


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 
     


      

 

 (17) 

 

When we use the system of relative units, the equations with partial derivatives, Eq. 
(1), the initial and boundary conditions can be written as follows: 

 

 

0

0, 0, for (0,1), 0;

( , ) ( , ) 0, for 0, [0,1];

(0, ) 1, for 0, 0;

(1, ) 1
(1, ) (1, ) (1, ) , for 1, 0.

t

S s s
s

i u u i
x t

t x t x
u x t i x t t x

u t x t

di t
u t R i t L i d x t

dt C
 

   
     

   
   
  

    

 (18) 

 

in which L = C = 1, R = G = 0, l = 1, E (t) = U0 (t) = f (t) = 1 and Eq. (1), initial conditions of Eq. 
(2) and limit Eq. (3) can be represented by simplistic equations.  

As the basic parameter, it is possible to select the wavelength 
a

f
  of the signals 

transmitted via the circuit with distributed parameters, with the wave propagation velocity; 
f is the frequency of the signal transmitted over the circuit. 

 

3. The numerical solution 
To obtain a determined solution, it is necessary to formulate additional conditions. 

These conditions are called initial, which determine in the portion of 0 Nx x x   for 0t   
the distribution of current and voltage in the line. If we have a nonhomogeneous circuit, 
which includes homogeneous portions, for example, which are defined in the intervals 

1m mx x x   , where m is the number of the homogeneous portion, xm-1 is the beginning and 
xm is the end of the homogeneous portion. 

To obtain the numerical solution it is necessary to introduce a uniform network of 
computation on the continuous variation portion of the argument x∈ [0, l] with the value of 
the meshes , 1, 2,3,..., N.nh n   This network includes whole nodes and half-nodes. The 
unknown functions of current and voltage are determined in the half-nodes of the 
numerical calculus of network, which is determined from the relationship

1/2 1( ) / 2n n nx x x   . The computing network obtained by dividing the length or the 
homogeneous portion of the nonhomogeneous line is formed so that the 
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1/2/n nh a const    condition is met within the partitioned portion. The time discretization 
step  is noted in organizing the numerical computation process for obtaining the solution 
of the differential equation. Concurrently it is necessary to meet the condition that the 
boundaries of the splitting segments of the homogeneous portions of the line with 
distributed parameters coincide with the points which represent the whole nodes of the 
calculation network x = xn. 

The calculation is performed in successive steps. Knowing the values of i and u 
functions over? the previous time interval (e.g., from the initial conditions), the values of the 
functions i and u are determined for the current time interval in the numerical computation 
process. 

Approximation of the first derivatives is carried out using the centered values of the 
unknown variables.  

The transformation of Eq. (1) is carried out by substituting the derivatives of the 
unknown variables by analogy with the presented in the form of finite differences, thus 
obtaining the following relations: 

 

 

1/2 1/21
1/2 1/2

1/2 1/2

1/2 1/21
1/2 1/2

1/2 1/2

;
2

.
2

n nn n
n n

n n
n

n nn n
n n

n n
n

i i i iu u
L R

h

u u u ui i
C G

h





 
 

 

 
 

 

 
  

 
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 (19) 

 

or in an obvious form: 
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1/2 1/2 1/2 1/2 1/2
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    


 

    

        
  

        
  

 (20) 

 

The top indices correspond to the "top" time range. Additional values i n , u n  given 
in the points nx  are calculated from the linear relationships /dx dt a  , in which the 

constants  ,I x t i aC u    that correspond to Eq. (20), maintain their constant values: 

 ,I x t const  . 

When accepting the hypothesis that unknown functions have constant values in the 
range of -1( ,   )n nx x , an algebraic system of equations with two unknowns can be obtained 

,  :n ni u  
 

  -1 / 2 -1/ 2 1 2 1 2 1 2 1 2

+1/ 2 +1/ 2 +1 2 +1 2 +1 2 1/ 2

;

.

n n
n n n n n n

n n
n n n n n n

i a C u i a C u

i a C u i a C u

   



  

  
/ / / /

/ / /

 (21) 

 

From Eq. (21) we can obtain relations for determination of intermediate values of 
unknown parameters: 

To calculate the values of i and u at points x0 = 0 and x lN  =  the boundary 

conditions and the corresponding relations on the characteristics are used: 
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;

,
l N l N l
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i u f

i a C u i a C u

i u f

i a C u i a C u

 

 

     

 
  
 

  

 (23) 

 

where , , f  are the known functions of the time variable. 
For example, the voltage u (0, t), which is described by the function f0 (t), so u (0, t) = 

f0(t), has been applied at the beginning of the line (at the coordinate point x = 0). At the end 
of the line the initial values are determined, which are considered to be null for voltage or 
current: u (l, t) = 0 (SC), i (l, t) = 0 (IM). These parameters can be replaced at the power 
consumed on the load as a function of time:      , , li l t u l t P t  . In this case, the boundary 

condition is non-linear and the solution to the problem can be undetermined, or not 
generally determined. 

For a conducting medium with values jumps of the distribution parameters L, C, R, G 
at the connection boundaries of the portions x = xn the continuity conditions [20] are 
defined: 

 

 [ i ] = [ u ] = 0   for     x = xn , t > 0  (24) 
 

Using i and u, the conditions were noted  that from the left and right of the border 
point the current or the tension do not change by jumps of the values. This coincides with 
the principle of continuity of the current in the conductor u u  and i i  , so also, 

,u i   where the values of voltage are on the right and ,u i  where the voltage and current 
values are on the left of the border point. 

Thus, the initial conditions are defined for two unknown functions i and u, and the 
boundary condition at the conductor ends is the only one. From the properties of the 
hyperbolic systems of equations, it is also necessary that  and   satisfy the following 
relations: 

 0 0

0 0

0; 0.
1 1

l l

l la C a C

   
   (25) 

where 0 , la a are the propagation velocities of electromagnetic waves at the beginning and 
end of the line. If the condition of Eq. (25) is satisfied, Eq. (22) has a single solution. 

The necessary and sufficient stability condition of the numerical calculation method 
is obtained by the method of a priori estimation of the energy balance given by the relation 
[10]: 

 

 1/ 2/n nh a  . (26) 
 

If we use point -1/ 2 0(  ; )nx t  as a reference, the calculated numerical scheme 
corresponds to the first degree of approximation of the time and linear dimension variables. 
The analysis of the discrete approximation of the differential Eq. (20) indicates that when 
using the maximum value of the time 1/2/n nh a   discretization step, leakage or fictitious 
sources of energy are not observed. This also refers to the phenomena of dissipation and 
dispersion of the numerical calculation scheme (in some cases up to zero). This observation 
is confirmed both by the numerical solutions of the classical problems, for which the 
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analytical solutions (standard) are known, and in the strict compliance with the energy 
balance in the line of Eq. (5) to the difference level. 

If 1/2/n nh a   the obvious Eq. (20) – Eq. (23) predictor-correction pattern is unstable, 
and if 1/2/n nh a   the difference in energy dissipation can be very essential, and the 
simulated waveform can be heavily distorted. 

The essence of the necessity to use the allowed limit value of the time discretization 
step  , arises from the fact, that the slope of the signal, which propagates at speed 1/2na  , 
has to travel the distance equal to the step hn of the numerical computing network. 

In the proposed method, which allows simultaneous determination of instantaneous 
values of current and voltage at an arbitrary point of the line, the calculation is made using 
formulas with a typical structure that do not depend on coordinates. The conditions of Eq. 
(24) are automatically imposed for the contact border sections nx x , and are not 
particularly highlights, as is needed for other methods of solving telegraph equations for 
lines containing portions with different values of distributed parameters. The relationships 
in the finite differences allow passing to the limit, i.e., if 0L   (or C   ) we have 0u  , 
and L   ( or 0C  ) we obtain 0i  .  This way it is easy to consider the existence in 
the nonhomogeneities the line with the concentrated parameters of bipolar and multipolar 
types of switches, reactors, filters, phase difference transformers, etc. 

The finite difference scheme allows for the calculation of continuous (general) 
solutions for which the wave fronts are automatically highlighted. 

The proposed algorithm is easy to program and allows for extensive parametric 
investigations of transient and stationary processes, the knowledge of which is necessary 
for a correct determination of the operating regimes and realization of the technical 
systems with distributed and localized nonhomogeneities without too much idealization of 
objects with distributed parameters. 

Obtaining results similar to those exhibited by experimental methods is a very 
complex issue, and it is often impossible to find a satisfactory solution to the problem 
under consideration. 

Based on the invariant character of the wave equations (for the case R = 0, G = 0) to 
the substitution procedure t t   and x x   it is possible to inverse the time and restore 
the initial signal. Reversing the time variable is also permissible for a line with loss and 
deformation of the signal,  namely, in the line with the parameters 0R   and 0G  . 

 

3.1. The Procedure for Calculating Voltage and Current in the Nodes and Half-Nodes 
of the Line 
The solution is obtained in two phases. At the first stage the unknown values of 

current i and voltage u are determined at the points marked as whole nodes  0,nx t  , 

taking into account the connection conditions in the section nx const . For all points 
denoted as nodes 0 nx l   in the range the conditions n ni i   and n nu u  . 

The values of the currents ni  and voltages nu in the points nx n h   are determined 
from the system of algebraic equations: 

 

 
       1 1

2 2

;

0; 0,

n n

n n
i aCu i aCu i aCu i aCu

i i u u

       

 

   

     
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  (27) 
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where h is the step of grid; n = 0, 1, 2, 3, ...is the order number of the grid point 
where the unknown values are determined for time 1i it t   ;  is the discretization of 
time in the numerical calculation scheme. 

In Eq. (27) index n does not mean raising to a power. This only emphasizes that the 
current and voltage values are determined for the node to the calculation grid denoted by 
n. Values of such unknown variables as in and un are additional intermediate sizes. 

The unknown variables in the algebraic equation system of Eq. (27) are designated  

via the transduced vector of  the currents and the voltages         , , ,
Tn n n n

Z i i u u    at 

the point with the coordinates  ,nx t  can be determined from the matrix equation: 
 

 BZ Y  (28) 
 

Where 
 

     1 2 3 4 1 2 3 41 1
2 2

1 0 0

0 1 0
; , , , ; ; ; 0.

1 1 0 0

0 0 1 1

T

n n

aC

aC
B Y Y Y Y Y Y i aCu Y i aCu Y Y   

 




       


 
 
 

Element values iY  in system equations of Eq. (28) are known because they were 
calculated for the time 1it t  . To get the solution of the matrix equation we multiply the 
left- and right-hand parts to the inverted matrix B-1: 

 

 1Z B Y  (29) 
 

After the values of the Z vector have been obtained, in all nodes "n" of the numerical 
calculation grid, using Eq.(29), the values of current and voltage in the half-nodes of the 
numerical grids 1

2
( , )

n
x t 


  can be calculated by means of Eq. (20). 

 

3.2. Determination of Voltage and Current at the Marginal Points of the Line 
3.2.1. The input in line 
For a more general overview of the use of the finite difference method, we shall 

consider that the line ends are connected to circuits with RLC parameters. This hypothesis 
can describe the power supply source, since any power source is characterized by the 
internal impedance which may generally include all passive components of the RLC type 
circuit. 

The RLC passive components have the serial connection and the balance of the 
voltages from the connection points line with distributed parameters and are described by 

the integral-differential equation 
0

1 tdi
u Ri L idt

dt C
    . 

At the line input the conditions i+ =i- and u+ = u- are fulfilled. The voltage equilibrium 
at the line input is represented by the following relations: 
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0

1
0

t

E E E
E

di
R i L idt u

dt C
     

 

or in finite differences 
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By transforming the last expressions we get the relationship: 
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where in is the current value for the time step is 1
n

n nt t t    ; ni
 is the current 

value at the previous step of time tn; n ki is the instantaneous value of the current at the 
previous time;  is discretization intervals of time t. 

At the entry of the line the following system of equations is true: 
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 (30) 

 

For k = n we obtain the known value of the current from the initial conditions for t = 
0, applying the system of equations in the form of finite differences matrix: BZ = Y, where 
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Matrix B for marginal regimes is of idle and short circuit regimes. In the idle regime, 
the coefficient next to the unknown variable i+ = i- in the second equation of (30) tends to 

  . If we divide the components of the second equation into the E
E

E

L
R
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coefficient, we get a modified relationship of 1 0 0,i u     because
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 For these conditions, we obtain the 

matrices 
1

1 0

aC
B


  and 2 0Y  . 
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In the short-circuit regime, the voltage u = 0 and 0i   in the point x = 0, the 

equation has the structure: 0 1 0i u    , because only for 0E
E

E

L
R

C




   , the of condition 

u = 0 for the short circuit will fulfilled. The matrices, which present the coefficients of the 

independent variables are 
1

0 1

aC
B


  and 2 0Y  . 

 

3.2.2. End of the line 
For the end of the line x = l, to which the RLC circuit is connected, the equations are 

valid: 
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2 0

1
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                               (31) 

 

where i-=i=iN şi u-=u. 
The second equation in finite differences system of Eq. (31) is as follows: 
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After some transformations of equation Eq. (32) we get the relation: 
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The elements of the matrix equation for point x = l are the following: 
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At idle regime at the end of the line 0; 0i u  and S
S

S

L
R

C




    , or after 

division we get the equation: 
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The system of equations of Eq. (31) turns into the following relationship: 
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In case 0S
S

S

L
R

C




    of short circuit ( 0i  ), from which it follows that we also 

have 0SL


  and 0

SC


  for any step  of the discretization for the time t. The following 

system of equations is obtained: 
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2
;

0 1 0,
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N
i aCu i aCu

i u


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where from   11 2
2

1
; ; 0

0 1 N

aC
B Y i aCu Y


   


. 

3.3. Connecting the long line to the DC voltage source 
Analysis of the regimes with the multiple reflection wave becomes difficult for the 

line with the energy loss and signal distortion. In any electric circuit with distributed 
parameters, the wave distortion phenomenon is observed when the condition of CR LG  
is not met. To obtain the solution we shall use the finite difference scheme constructed for 
the whole node (n, n-1) and half-nodes (n-1/2; n + 1/2) of the grid [17]. In the approximate 
equations in finite differences of Eq. (19) the ,d d   correction coefficients were introduced 
[21], which decreased the impact of the effects of dissipation and dispersion of the waves in 
their propagation process in the circuit with the distributed parameters: 
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 (33) 
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In the transcription shown, the numerical calculation scheme of Eq. (33) is 
characterized by the null of the dissipation of the numerical solution and a minimum value 
of the dispersion of this solution. The energy balance at the finite difference is strictly 
observed regardless of the value of the meshing step of the calculation grid. 

As a test problem we will examine the fall of the voltage wave on the ideal capacity 
with 80SC F  [22].  

The cable line parameters are as follows: 
0.25 / ; 31.2 / ; 1.88 / ;C F km L mH km R Ohm km   , 0; 320G l km  ; 16436 / .a km s  The 

wavelength is λ = a / f = 228.57 km. These parameter values are selected to allow us the 
numerical solution with the analytical solution from source [22] to be compared. In the 
relative units system, the parameters have the following values: 

1, 1.703, 0SC L l C a R G       , because at the application of a voltage to the line 
input, the energy losses in the insulation can be neglected. 
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3.3.1. Capacitive load  
The initial conditions are null and the boundary conditions at the entrance and end 

of the line are as follows: 

0

1
1 for 0; ( ) for 1

t

s
u х u i d х

C
      (34)  

The approximation in the finite difference of the boundary conditions is performed. 
The currents and voltages at the point with the coordinates x  1  are presented by the 
vector  , TZ i u . To determine the parameter Z it is necessary to solve the system from 
two equations with two unknowns, which in the matrix form can be presented as follows: 

 

 ,BZ Y   (35) 
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From these formulas we can see that in this case we have the short-circuit mode. 
From these formulas we can observe that for SC    we have u  0 , and in this case we 
have the short-circuit mode as well.  

The variation of voltage over time (uC curve) and current (iC) at the end of line with 
the capacitive load are shown in Figure 3. A large number of calculation experiments have 
been performed which show that in the proposed numerical scheme the effects of wave 
dispersion and dissipation are minimal even for the grid with high values of the eyes, which 
has about 10-20 knots. The numerical solutions obtained are practically correct, because 
there is an exact energy balance at the scheme level in finite differences. Also, a good 
internal convergence of the calculation method is observed, in the case of simulating the 
propagation process of the rectangular wave. 

The curves analysis of Figure 3 on the capacitor connected at the end of the cable 
line indicates that changes through jump (curve iC) occur at a time that corresponds to that 
of arrival of the voltage wave uC at the condenser connection point of the line in the cable. 
The amplitude of the wave decreases with each passage in the cable due to energy 
dissipation. 

 

 
Figure 3. The voltage (curve 1) and the current (curve 2) at the end of the line at C = L = a = l

= 1; R = 1.703; G = 0; CS = 1; RS = LS = 0. 
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3.3.2. Active load  
If the line in the cable has an active load RS = 1.703, for this load the boundary 

conditions will be determined by the relation of u = RSi for x = l = 1. Matrix equation BZ = Y 
will have the following coefficients: 

1 1/2 1/2 2
1

; ; 0.
1 n n

S

aC
B Y i aCu Y

R     


 

For parameter values of the tested cable and load with active value RS = 1.703 r.u. a 
rapid attenuation of the magnitude of the voltage and current waves is observed with the 
achievement of the permanent regime of Figure 4. 

 

 
Figure 4. The voltage (curve uR) and current (curve iR) at the end of line for parameters of 

the circuit: C = L = a = l = 1; R = 1.703; G = 0; CS = ∞; RS = 1.703; LS = 0. 
 

3.3.3. Inductive load  
Let us examine the case when the cable line has an inductance without loss of 

1SL   value. The LS inductance voltage drop is determined from the relationship s
di

u L
dt

  

for x  1  using the matrix equation of Eq. (35). The coefficients in Eq. (35) are determined 
by the following relationships: 

 

;
/

s
1 n-1/ 2 n-1/ 2 2 n

S
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1
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The voltage and current evolution curves on the inductive load of the cable line 
obtained by numerical calculation are shown in Figure 5a. 

Parametric analysis of the wave processes in the line without losses with inductive 
load indicates the increase in the current of the circuit, while the inductance voltage has an 
oscillatory character (Figure 5b). 

In course of time, the amplitude of the voltage decreases and the circuit switches to 
short circuit. 

The observed process may be of practical interest, for example, if it is necessary to 
solve the problem of storing energy in the inductance with superconductivity from a source 
with a limited voltage value. 
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Figure 5. Curves of current  iL and voltage uL on inductance without losses LS connected to 
the line in cable: C = L = a = l = 1; R = 1.703; G = 0; LS = 1; CS =  ; RS = 0 (a) and R = 0; G = 0; 

LS = 1; CS =  ; RS = 0 (b). 
 

3.3.4. RLC load 
The limit conditions at the end of the line (x = 1) are represented by the integral-

differential equation:  
0

1
.

t

s S S
S

di
u R i L i d

dt C
      

At the finite difference approximation of Eq. (35) we obtain the following relations 
for its coefficients: 
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 It can be observed that when the condition of 0S SR L   is met and SC    the short-
circuit mode ( 0su  ) is obtained, then for the conditions of 0SL   and S SC R    we have 
the idle regime, because the current 0si i  . Figure 6 shows the voltage and current curves in 
the line load. In Figure 6a, the cable line insulation losses are considered equal to zero, so G = 0. 
The line energy losses are determined only by its longitudinal resistance R. In Figure 6b, the 
voltage and current curves in the ZS load are also influenced by the active conductivity G of the 
line, that is to say, the losses in cable line insulation. These results indicate the influence of line 
losses on the characteristics of the transient process in the examined circuit, as the increase of 
the leakage currents in the RLC load decreases. This is an obvious finding, but the originality of 
the solution obtained is determined by the fact that it is common to any type of line due to the 
use of the relative units system. Using the described calculation model, a broad parametric 
analysis of the operating regimes of the circuits with distributed parameters can be made. 

 

Figure 6. Current and voltage curves in load RS = LS = CS = 1 of line in cable with parameters 
C = L = a = l = 1; R = 1; G = 0 (a) and C = L = a = l = R = G = 1 (b). 
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3.3.5. Modeling a complex regime 
The study of the wave processes in the lines with loss indicates a strong influence of 

the losses in line on the dynamics of the non-stationary process. For this purpose, the 
calculations of the regime were made in the line x = l = λ / 8, in which the idle and short-
circuiting changes from short circuit to idle regime. These changes are made in the 
uninterrupted numerical calculation process time interval equal with duration the 5 wave 
propagations through the cable with distributed parameters. The rate of loss in cable is 
defined by the dissipation coefficient γL = R / L and γC = G / C. In the event that γL = γC we 
have the circuit without the distortion of the signal shape, which travels through the 
distributed parameter circuit. In relative units for the line without distortion the condition γ 
= γL = γC = 1 is fulfilled. 

The results of the numerical calculation of the regime by changing the load from idle 
to short regime of the line are shown in "Figure 7" and "Figure 8".The interconnection line 
between source and load has an influence on process dynamics in this circuit. In order to 
quantify the degree of influence, some circuit regimes were studied for different line 
parameter values - from the lossless line (the ideal line) to the line with increased energy 
losses. As characteristic regimes the electric power transmission regimes were selected 
through the loss-free line ( 0  ) the non-distortion line of the electric signals ( 1   ) and 
the with distortion line of the electric signal ( 1  ). Depending on the ratio of the 
transmission line parameters, the essential features of the processes in these circuits are 
observed. It is essential the energy accumulation regime with increasing the voltage in the 
lossless line (ideal line), which operates in a short-circuit regime. In the event that no action 
is taken, the increase in idling voltage can be completed with the electrical breakthrough of 
the insulation, thus with the complete refusal of the line. 

These simulations confirm the robustness of the uninterrupted computational 
method and its applicability for studying the particularities of the circuits with distributed 
parameter and concentrated parameters. These numerical simulations have a high degree 
of precision of the solutions obtained by the finite difference method. At the same time, the 
solutions are correct and have a high degree of credibility and correspond to the physical 
essence of the dynamic processes occurring in the circuits with distributed and lumped 
parameters, included for the detection of certain regimes, which is difficult to notice, even if 
the analytical solution is known. 

 

  

Figure 7. The currents and voltages (curves il and ul) for lines with linear parameters: γ 0
(a); γ 1  (b), when conditions IM-SCM-IM are met at the line end. 
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Figure 8. Сurrents (curve il) and voltages (curves ul) for line with linear parameters:R=1, G=0, 

(a) and γ = 5  (b), when the regime in the lines with the long x=l=λ/8 it changes in the order: 
idle - short sircuit - idle modes. 

 

Conclusions 
The mathematical models of the circuits with distributed and defiled parameters are 

recommended to be elaborated, using hyperbolic equations with partial derivatives. In this 
case, equations with partial derivatives can be transformed into differential equations of an 
independent variable. The use of relative units system for the description of the coefficients 
and the independent variables allows us to generalize the studied problem and to obtain 
correct solutions for the electrical lines of different lengths, which ensures the possibility of 
comparing the technical indices and the efficiency of different circuits. 

The process of forming the mathematical model of calculation the regimes in 
complex structure circuits based on the telegraph equations and procedure to define the 
initial and boundary conditions in the relative units system were proposed and discussed. In 
order to obtain numerical solutions, taking into account the peculiarity of the electrical 
circuit topology and the physical processes occurring over time, it is recommended to 
perform the mathematical models of simulation of these processes using the finite 
difference method. The numerical solutions obtained correctly reflect the physics of the 
processes in these circuits. The finite difference method ensures a high degree of precision 
of numerical solutions. 

Numerical simulations of circuit operating regimes with distributed and lumped 
parameters allow for the detection of effects that are not visible, even if the analytical 
solution is known. Thus, it has been found that in the complex circuit consisting of the part 
with distributed parameters (long line) and the load with lumped parameters (inductance), 
it is possible to continuously inject the energy into this inductance even from the DC power 
supply. This phenomenon is a promising research in the future as it can provide a solution 
for routing with the energy storage process in inductance with superconductivity. 

The mathematical models, the proposed design process of these models, have a 
good degree of flexibility and are suitable for carrying out parametric researches in order to 
optimize the operation regimes and to ensure the protection and reliability of the circuits in 
dynamic regimes. 
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