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Abstract. In this paper, we considered the problem of optimally controlling a two-
dimensional dynamical system until it reaches either of two boundaries. We consider a 
controlled dynamical system ሺܺሺݐሻ, ܻሺݐሻሻ which is a generalization of the classic two-
dimensional Kermack-McKendrick model for the spread of epidemics. Moreover, the system is 
subject to random jumps of fixed size according to a Poisson process. The system is controlled 
until the sum ܺሺݐሻ  	ܻሺݐሻ is equal to either 0 or d (> 0) for the first time. Particular problems are 
solved explicitly. 
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 1. Introduction 
Let ܺሺݐሻ denote the number (or percentage) of individuals in a certain population 

who are susceptible to a virus, and let ܻሺݐሻ be the number (or percentage) of infected 
carriers. The two-dimensional model proposed by Kermack and McKendrick [1] for the spread of 
epidemics is the following: 

 

 ሶܺ ሺݐሻ ൌ െ݇ଵܺሺݐሻܻሺݐሻ, (1) 
 

 ሶܻ ሺݐሻ ൌ ݇ଵܺሺݐሻܻሺݐሻ െ ݇ଶܻሺݐሻ, (2) 
 

where ݇ଵ and ݇ଶ are positive constants. There is also a three-dimensional version of the 
model in which the variable ܼሺݐሻ represents the number (or percentage) of individuals who 
are either recovered or removed from the population and is such that 

 

 ሶܼ ሺݐሻ ൌ 	݇ଶܻሺݐሻ, (3) 
 

This type of model is known as a SIR model in epidemiology, for Susceptible, 
Infected and Recovered (or Removed). Depending on the application, an individual can be 
removed from the population because he/she is cured and immune, or is dead. 

In this paper, we first generalize the system (1), (2) and we introduce a control 
variable: 

 

 ሶܺ ሺݐሻ ൌ െ݇ଵܺሺݐሻܻሺݐሻ,  (4) 
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 ሶܻ ሺݐሻ ൌ ݇ଵܺሺݐሻܻሺݐሻ  ݂ሾܺሺݐሻ, ܻሺݐሻሿ  ܾሾܺሺݐሻ, ܻሺݐሻሿݑሺݐሻ. (5) 
 

Then, we assume that there are random jumps of fixed size ϵ (> 0) that occur according to a 
Poisson process ܰሺݐሻ with rate λ, so that Eq. (5) becomes 

 

 ሶܻ ሺݐሻ ൌ ݇ଵܺሺݐሻܻሺݐሻ  ݂ሾܺሺݐሻ, ܻሺݐሻሿ  ܾሾܺሺݐሻ, ܻሺݐሻሿݑሺݐሻ  ߳ ሶܰ ሺݐሻ.	 (6) 
 

Let ܶሺݔ,  ሻ be the random variable defined byݕ
 

 ܶሺݔ, ሻݕ ൌ infሼݐ  0: ܺሺݐሻ  ܻሺݐሻ ൌ 0	or	݀	|	ܺሺ0ሻ ൌ ,ݔ ܻሺ0ሻ ൌ   (7)	ሽ,ݕ
 

where 0 < x + y < d. We are looking for the control ݑሺݐሻ that minimizes the expected value 
of the cost function 

 

,ݔሺܬ  ሻݕ ൌ 	
ଵ

ଶ

்
 ,ሻݐሾܺሺݍ ܻሺݐሻሿݑଶሺݐሻ	dݐ  ,ሾܺሺܶሻܭ ܻሺܶሻሿ, (8) 

 

in which  ݍሾܺሺݐሻ, ܻሺݐሻሿ is a positive function and we choose the following final cost: 
 

,ሾܺሺܶሻܭ  ܻሺܶሻሿ ൌ 	 ൜
ܺሺܶሻ	if	ଵܭ  ܻሺܶሻ ൌ 0,
ܺሺܶሻ	if	ଶܭ  ܻሺܶሻ ൌ ݀,

 (9) 
 

where 0	  ଵܭ ൏  ,ଶ. Therefore, the optimizer wants to end the epidemic as soon as possibleܭ	
while taking the quadratic control costs into account. If the sum ܺሺܶሻ  ܻሺܶሻ reaches the 
value d, it is too expensive to bring the sum to zero by using the control variable ݑሺݐሻ. 

The problem set up above is known as an LQG homing problem; see Whittle [2] and 
[3]. However, here we assume that there are random jumps instead of a Gaussian white 
noise; see Lefebvre [4]. There could be both a Gaussian white noise and jumps according to 
a Poisson process, so that Y(t) would be a controlled jump-diffusion process. This type of 
problem was considered by Lefebvre [5] and by Lefebvre and Moutassim [6]. 
 To solve our problem, we will make use of dynamic programming. In the next 
section, we will derive the equation satisfied by the value function ܨሺݔ,  ሻ, which is definedݕ
as follows: 

 

,ݔሺܨ  ሻݕ ൌ 	 inf௨ሺ௧ሻ,ஸ௧ஸ்
	

										 ,ݔሺܬሾܧ  ሻሿ. (10)ݕ
 

Then, in Section 3, particular problems will be considered and solved explicitly. Finally, we 
will end this paper with some concluding remarks. 

 

2. Dynamic programming 
With the help of Bellman’s principle of optimality, we can write that 

 

,ݔሺܨ  ሻݕ ൌ 	 inf௨ሺ௧ሻ,ஸ௧ஸ௧
	
						 ܧ ቄ 	ଵ

ଶ
,ሻݐሾܺሺݍ ܻሺݐሻሿݑଶሺݐሻ	dݐ  ,ሻݐ∆൫ܺሺܨ ܻሺ∆ݐሻ൯

∆௧
 ቅ, (11) 

 

where 
,ሻݐ∆൫ܺሺܨ  ܻሺ∆ݐሻ൯ ൌ ݔ൫ܨ െ ݇ଵݐ∆ݕݔ, ݕ  ሾ݇ଵݕݔ  ݂  ݐ∆ሺ0ሻሿݑܾ  ߳ܰሺ∆ݐሻ൯   ሻ (12)ݐ∆ሺ

 

We have 
 

 
ଵ

ଶ
,ሻݐሾܺሺݍ ܻሺݐሻሿݑଶሺݐሻ	dݐ ൌ ଵ

ଶ
,ݔሺݍ ݐ∆ଶሺ0ሻݑ	ሻݕ  ሻݐ∆ሺ

∆௧
  (13) 

 

and, from Taylor’s formula, 
ݔ൫ܨ െ ݇ଵݐ∆ݕݔ, ݕ  ሾ݇ଵݕݔ  ݂  ݐ∆ሺ0ሻሿݑܾ  ߳ܰሺ∆ݐሻ൯

ൌ ,ݔሺܨ ሻݕ െ ݇ଵܨݐ∆ݕݔ௫ሺݔ, ሻݕ  ሼሾ݇ଵݕݔ  ݂  ,ݔ௬ሺܨሻሽݐ∆߳ܰሺݐ∆ሺ0ሻሿݑܾ ሻݕ  ሻݐ∆ሺ
 (14) 

 

Moreover, for a Poisson process, we can write that 
 



 Stochastic optimal control of a two-dimensional dynamical system 39 

Journal of Engineering Science  May, 2020, Vol. XXVII (2) 

 ܲሾܰሺ∆ݐሻ ൌ 0ሿ ൌ 	 ݁ିఒ∆௧ ൌ 1 െ ݐ∆ߣ   ሻ (15)ݐ∆ሺ
 

And 
 ܲሾܰሺ∆ݐሻ ൌ 1ሿ ൌ ఒ∆௧ି݁ݐ∆ߣ	 ൌ ݐ∆ߣ   ሻ. (16)ݐ∆ሺ

 

It follows that 

 
0 ൌ inf௨ሺ௧ሻ,ஸ௧ஸ௧ 	ቄ∆ݐ ቂ

ଵ

ଶ
ଶݑݍ െ ݇ଵܨݕݔ௫  ሾ݇ଵݕݔ  ݂  ௬ܨሿݑܾ

	ߣሾܨሺݔ, ݕ  ߳ሻ െ ,ݔሺܨ ሻሿ൧ݕ  ሻൟݐ∆ሺ
 (17) 

 

where all the functions are evaluated at t = 0. Dividing each side of Eq. (17) by Δݐ, and 
letting Δݐ decrease to zero, we obtain the dynamic programming equation 

 

0 ൌ inf
௨
ቄଵ
ଶ
ଶݑݍ െ ݇ଵܨݕݔ௫  ሺ݇ଵݕݔ  ݂  ௬ܨሻݑܾ  ,ݔሺܨሾߣ	 ݕ  ߳ሻ െ ,ݔሺܨ  . (18)	ሻሿቅݕ

 

Hence, the optimal control u* can be expressed in terms of the value function as follows: 
 

∗ݑ  ൌ െ 


 . (19)	௬ܨ

 

Therefore, to obtain the optimal control, we must solve the non-linear partial differential-
difference equation 

 

 െ మ

ଶ
൫ܨ௬൯

ଶ
െ ݇ଵܨݕݔ௫  ሺ݇ଵݕݔ  ݂ሻܨ௬  ,ݔሺܨሾߣ	 ݕ  ߳ሻ െ ,ݔሺܨ ሻሿݕ ൌ 0	. (20) 

 

This equation is valid for 0 ൏ ݔ  ݕ ൏ ݀. Moreover, we have the boundary conditions 
 

,ݔሺܨ  ሻݕ ൌ ݔ	if	ଵܭ  ݕ ൌ 0			and			ܨሺݔ, ሻݕ ൌ ݔ	if	ଶܭ  ݕ ൌ ݀. (21) 
 

Based on the above conditions, to solve Eq. (20) we will look for solutions of the 
form 

 

,ݔሺܨ  ሻݕ ൌ   (22)	ሻ,ݓሺܪ
 

where ݓ ∶ൌ ݔ   This a particular case of the method of similarity solutions, and w is called .ݕ
the similarity variable. For the method to apply, we must be able to express Eq. (20) in terms 
of ݓ, as well as the boundary conditions in Eq. (21). These conditions become 
 

ሺ0ሻܪ  ൌ ሺ݀ሻܪ		and		ଵܭ ൌ   (23)	.	ଶܭ
 

Furthermore, we have 
 

,ݔሺܨ  ݕ  ߳ሻ െ ,ݔሺܨ ሻݕ ൌ ௬ܨ߳	 	
ఢమ

ଶ
௬௬ܨ    (24)		ሺ߳ଶሻ.

 

Therefore, if ϵ is small, we can write that 

 െ మ

ଶ
൫ܨ௬൯

ଶ
െ ݇ଵܨݕݔ௫  ሺ݇ଵݕݔ  ݂ሻܨ௬  ߣ	 ቀ߳ܨ௬ 	

ఢమ

ଶ
௬௬ቁܨ 	≅ 0	.	 (25) 

 

This equation reduces to the ordinary differential equation 
 

 െ మ

ଶ
ሺܪᇱሻଶ  ᇱܪ݂	  ߣ	 ቀ߳ܪᇱ 	ఢ

మ

ଶ
ᇱᇱቁܪ 	≅ 0	.	 (26) 

We can now state the following proposition. 
 

Proposition 1. If the ratio ܾଶ/ݍ and the function ݂ can be expressed in terms of the 
similarity variable ݓ, and if the jump size ߳ is small, then the optimal control ݑ∗ can be 



40 M. Lefebvre  

Journal of Engineering Science  May, 2020, Vol. XXVII (2) 

obtained (approximately) from the solution of Eq. (26), subject to the boundary conditions 
in Eq. (23). 

In the next section, particular problems will be considered and solved explicitly. 
 

3. Particular problems 
 Assume that the ratio ܾଶ/ݍ is a constant: 

 

 మ

ଶ
≡ ሺ	ߢ 0ሻ.	 (27) 

 

First, we consider the case when ݂ሺݔ, ߛ ሻ ≡ γ. Letݕ  ߳ߣ ൌ 	ଶ/2߳ߣ	and ,ߙ ൌ	β. Then, we must 
solve the second-order non-linear ordinary differential equation 

 

 െߢሺܪᇱሻଶ  ᇱܪߙ  ᇱᇱܪߚ 	≅ 0	.	 (28) 
 

Notice that this equation is a Riccati equation for ܩሺݓሻ ∶ൌ  ሻ. The solution of Eq. (28)ݓሺ’ܪ	
that satisfies the boundary conditions in Eq. (23) is 

 

ሻݓሺܪ  ൌ െ
ఉ


ln ቈ

ୣ୶୮ቀି
ഉ಼మశഀೢ

ഁ
ቁିୣ୶୮ቀି

ഉ಼భశഀೢ
ഁ

ቁାୣ୶୮ቀି
ഉ಼భశഀ

ഁ
ቁିୣ୶୮ቀି

ഉ಼మ
ഁ
ቁ

ୣ୶୮ቀି
ഀ
ഁ
ቁିଵ

 	.
	

		 (29) 

 

From this solution, we can compute at once the optimal control given in Eq. (19) for any 
choice of the functions ܾ and ݍ such that Eq. (27) is satisfied. 

To illustrate the results that we obtained, let us consider the particular case when κ 
= 2, γ = െ1, λ = 10, d = 2, K1 = 1 and K2 = 2. The function ܪሺݓሻ is shown in Figure 1 for 
various values of the parameter ϵ. The corresponding optimal controls (in terms of w) in the 
case when b ≡ 2 and q ≡ 1 (so that κ = 2, as required), are given by ݑ∗ ൌ െ2ܪ’ሺݓሻ. 

 

Figure 1. Function ܪሺݓሻ when ݂ ≡ െ1 and (from left to right) ϵ = 0.5, 0.25 and 0.2. 
 

When we substitute the approximate solution ܪሺݓሻ into Eq. (20), we obtain the 
curves presented in Figure 2. We see that when ϵ = 0.25 (the dashed curve), the error (that 
is, the difference between zero and the value of the equation for w in the interval ሾ0, 2ሿ) is 
already quite small. With ϵ = 0.2 (the solid curve), the error is almost equal to zero, except 
near w = 1.5. Notice that our approximate solution should only be used when ݓ  ߳  2. 
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Figure 2. Error obtained with ܪሺݓሻ when ݂ ≡ െ1 and ϵ = 0.5, 0.25 and 0.2. 
 

In the second particular case that we consider, we assume now that ݂ሺݔ, ሻݕ ൌ ݔሺߛ 
 ሻ and that Eq. (27) still holds. According to Proposition 1, we can again make use of theݕ
method of similarity solutions to solve our problem. With the same values for the various 
parameters that were used above, we must now solve the differential equation 

 

 െ2	ሺܪᇱሻଶ െ ᇱܪݓ  10 ቀ߳ܪᇱ 	ఢ
మ

ଶ
ᇱᇱቁܪ 	≅ 0	. (30) 

 

We can obtain the general solution of this equation. It is expressed in terms of the error 
function erf: 

 

ሻݓሺܪ  ൌ െହఢమ

ଶ
ln 


ష

ర
ఱചమ൫ୣ୰൫√ଵ൯ିாభ൯ା

ష
మ
ఱചమሺாభିாమሻ

ୣ୰൫√ଵ൯ିாమ
൩, (31) 

 

where 
 

ଵܧ  ≔ erf ቀ
ሺଵఢି௪ሻ

√ଵఢ
ቁ 		and		ܧଶ ≔ erf ቀ√ଵ

ሺହఢିଵሻ

ହఢ
ቁ. (32) 

 

The solution that satisfies the boundary conditions ܪሺ0ሻ ൌ 1		and		ܪሺ2ሻ ൌ 2 is shown in 
Figure 3, for ϵ = 0.5, 0.25 and 0.2. 
Finally, we present the error obtained when using the approximate solution ܪሺݓሻ in Figure 
4. Again, we see that the error is very small when ϵ = 0.25 and 0.2. 
 Now, the cost function ܬሺݔ,  :ሻ defined in Eq. (8) can be generalized as followsݕ

 

,ݔሺܥ  ሻݕ ൌ  ቄଵ
ଶ
,ሻݐሾܺሺݍ ܻሺݐሻሿݑଶሺݐሻ  ቅߠ

்
 dݐ  ,ሾܺሺܶሻܭ ܻሺܶሻሿ, (33) 

 

where ߠ is a real parameter. When ߠ is positive (respectively negative) and ܭሾܺሺܶሻ, ܻሺܶሻሿ ൌ
0, the optimizer tries to reach either boundary as soon (respectively as late) as possible.  
If ߠ ൌ 1 and we use the same parameters as in the first particular case considered above, 
we must solve the non-homogeneous differential equation 

 

 1 െ 2ሺܪᇱሻଶ  ሺെ1  10߳ሻܪᇱ  5߳ଶܪᇱᇱ 	≅ 0	, (34) 
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Figure 3. Function ܪሺݓሻ when ݂ ൌ െሺݔ  ሻݕ and (from left to right) ϵ = 0.5, 0.25 and 0.2.
 

  

Figure 4. Error obtained with ܪሺݓሻ when ݂ ൌ െሺݔ  ሻݕ and ϵ = 0.5, 0.25 and 0.2. 
 

subject to the boundary conditions ܪሺ0ሻ ൌ 1		and		ܪሺ2ሻ ൌ 2. We find that  
 

ሻݓሺܪ  ൌ 1 
ହ

ଶ
߳ݓ 

ଵ

ସ
ߜሺݓ െ 1ሻ െ

5߳2

ଶ
ln 

ୣ୶୮൬
ഃሺೢశభሻశభబചశభ

5߳2
൰ିୣ୶୮൬

ഃశభబചశభ

5߳2
൰ିୣ୶୮൬

ೢഃశర

5߳2
൰ା	ୣ୶୮൬

మ	ሺమశഃሻ

5߳2
൰

ୣ୶୮൬
మ	ሺమశഃሻ

5߳2
൰ିୣ୶୮൬

ర

5߳2
൰

൩ (35) 

 

where 
 

ߜ  ≔ √100߳ଶ െ 20߳  9	. (36) 
 

The function ܪሺݓሻ is shown in Figure 5 for ϵ = 0.5, 0.25 and 0.2.  
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Figure 5. Function ܪሺݓሻ when ݂ ≡ െ1 and θ = 1 for (from left to right) ϵ = 0.5, 0.25 and 0.2. 
 

4. Concluding remarks 
 We considered the problem of optimally controlling a two-dimensional dynamical 

system until it reaches either of two boundaries. The system was subject to random jumps 
of fixed positive size, according to a Poisson process. As a generalization of this work, we 
could assume that the jumps are of random size and could be positive or negative. 
 We were able to obtain explicit approximate solutions to particular problems by 
making use of the method of similarity solutions. We saw that the error obtained by using 
these approximate solutions was very small when the jump size is also small, as expected. 
When this technique does not apply, we could at least try to solve the appropriate 
differential equations numerically. 
 Finally, this type of optimal control problem, when the final time is a random 
variable, could be considered for other important dynamical systems, for instance the 
classic predator-prey model of Volterra and Lotka [7]. 
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