dc.contributor.author | KONDRATIEV, G. | |
dc.contributor.author | BALABANOV, A. | |
dc.date.accessioned | 2020-12-17T16:41:12Z | |
dc.date.available | 2020-12-17T16:41:12Z | |
dc.date.issued | 1999 | |
dc.identifier.citation | KONDRATIEV, G., BALABANOV, A. Methods of solving of the optimal stabilization problem for stationary smooth control systems. Part II Ending. In: Computer Science Journal of Moldova. 1999, Vol 7, nr. 3(21), pp.314-332. ISSN 1561-4042. | en_US |
dc.identifier.uri | http://repository.utm.md/handle/5014/12191 | |
dc.description.abstract | In this article some ideas of Hamilton mechanics and differential-algebraic Geometry are used to exact definition of the potential function (Bellman-Lyapunov function) in the optimal stabilization problem of smooth finite-dimensional systems. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Mathematics and Computer Science | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Hamilton mechanics | en_US |
dc.subject | differential-algebraic Geometry | en_US |
dc.subject | Bellman-Lyapunov function | en_US |
dc.subject | smooth finite-dimensional systems | en_US |
dc.title | Methods of solving of the optimal stabilization problem for stationary smooth control systems. Part II Ending | en_US |
dc.type | Article | en_US |
The following license files are associated with this item: