About one special inversion matrix of 3-ary and 4-ary IP-loops

Leonid A. Ursu

Abstract

It is known that an n-IP-quasigroup can have more than one inversion matrix. We prove that one of these matrices for a 3-ary IP-loop and for a 4-ary IP-loop is the matrix of permutations every of which fixes identity of a loop and has order two. It is a good matrix allowing to investigate n-IP-loops in more detail.

Keywords: 3-IP-loop, 4-IP-loop, inversion system, inversion matrix

1 Introduction

The definitions of an n-IP-quasigroup (an n-IP-loop), $n \geq 2$, and of its inversion matrix one can find in [1]. It is known that an n-IP-quasigroup can have more than one inversion matrix and one of these matrices for an n-IP-loop with an identity e can be a matrix of the special form $[I_{ij}]_e$ which facilitates the study of n-IP-loops. V.D.Belousov has assumed that every n-IP-loop has the matrix $[I_{ij}]_e$ as an inversion matrix.

In [2], the example of a 3-IP-loop for which one of inversion matrices is the matrix $[I_{ij}]_e$ was given. Later in [3], it was proved that the matrix $[I_{ij}]_e$ exists for any n-IP-group with an identity e, for any symmetric n-IP-loop and for any n-IP-loop with one inversion parameter. The existence of the matrix $[I_{ij}]_e$ for any nonsymmetric n-IP-loops at present is not proved.

^{©2014} by L.A. Ursu

In this article we establish that the matrix $[I_{ij}]_e$ exists for any non-symmetric 3-ary IP-loop and for any nonsymmetric 4-ary IP-loop with an identity e.

2 Preliminaries

A ternary operation Q(), defined on a set Q, is called a 3-ary quasigroup with the invertible property (shortly, a 3-IP-quasigroup) if on Q there exist permutations v_{ij} , i = 1, 2, 3 (or $i \in \overline{1,3}$), $j \in \overline{1,4}$, where $v_{ii} = v_{i4} = \varepsilon$ (ε is the identity permutation) such that the following equalities hold: $((x_1^3), v_{12}x_2, v_{13}x_3) = x_1, (v_{21}x_1, (x_1^3), v_{23}x_3) = x_2, (v_{31}x_1, v_{32}x_2, (x_1^3)) = x_3$ for any $x_1^3 \in Q^3$.

The matrix

$$\begin{bmatrix} v_{ij} \end{bmatrix} = \begin{bmatrix} \varepsilon & v_{12} & v_{13} & \varepsilon \\ v_{21} & \varepsilon & v_{23} & \varepsilon \\ v_{31} & v_{32} & \varepsilon & \varepsilon \end{bmatrix}$$

is called an inversion matrix for a 3-IP-quasigroup, the permutations $v_{i,j}$ are called inversion permutations. Any row of an inversion matrix is called an inversion system for a 3-IP-quasigroup.

All these definitions are analogous for any n-IP-quasigroups.

An n-IP-quasigroup is called symmetric or an n-TS-quasigroup if $v_{ij} = \varepsilon$ for all $i, j \in \overline{1, n}$.

The least common multiple of the orders of all permutations of the *i*-th inversion system is called *the order of the i-th inversion system*.

The least common multiple of the orders of all inversion systems is called *the order of an inversion matrix*.

An element $e \in Q$ is called an identity for an n-quasigroup Q() if (x, e, e) = (e, x, e) = (e, e, x) = x for any $x \in Q$. An n-loop is an n-quasigroup with an identity.

The permutations I_{ij} on a set Q for an n-IP-loop with an identity e are defined as follows: $\binom{i-1}{e}, x, \stackrel{j-i-1}{e}, I_{ij}x, \stackrel{n-j}{e}) = e$ for any $x \in Q$ and

any $i, j \in \overline{1, n}$ [1]. The matrix $[I_{ij}]_e$ for a 3-IP-loop has the form:

$$\begin{bmatrix} I_{ij} \end{bmatrix} = \begin{bmatrix} \varepsilon & I_{12} & I_{13} & \varepsilon \\ I_{21} & \varepsilon & I_{23} & \varepsilon \\ I_{31} & I_{32} & \varepsilon & \varepsilon \end{bmatrix}.$$

If $(\varepsilon, v_{i2}, v_{i3}, \varepsilon)$ is the *i*-th inversion system of a 3-*IP*-loop, $i \in \overline{1,3}$, then $(\varepsilon, v_{i2}^{2n-1}, v_{i3}^{2n-1}, \varepsilon)$ is also the *i*-th inversion system of some inversion matrix of this 3-*IP*-loop, and $(\varepsilon, v_{i2}^{2n}, v_{i3}^{2n}, \varepsilon)$ is an autotopy of this 3-*IP*-loop [2]. The main definitions and results for a 3-*IP*-loop are true for a 4-*IP*-loop as well.

3 Permutations of inversion systems and matrices of 3-IP-loops

The obtained results relative to nonsymmetric 3-IP-loops (to non-3-TS-loops).

Proposition 1. If Q() is a 3-IP-loop with an inversion matrix $[v_{ij}]$, $i \in \overline{1,3}$, $j \in \overline{1,4}$ and with an identity e, then any non-identity inversion permutation in even power of any inversion system does not leave fixed the identity e.

Corollary 1. If Q() is a 3-IP-loop with an inversion matrix $[v_{ij}]$, $i \in \overline{1,3}$, $j \in \overline{1,4}$, and with an identity e, then any non-identity inversion permutation of any inversion system only in odd power leaves fixed the identity e.

It means that for any non-identity inversion permutation v_{ij} , $i, j \in \overline{1,3}$, of an inversion matrix of a 3-*IP*-loop there exists odd number $2n+1, n \in N$, such that $v_{ij}^{2n+1}e=e$, i.e., the identity of a loop is in a cycle of odd length in this inversion permutation.

Theorem 1. The matrix $[I_{ij}]_e$ is an inversion matrix for any 3-IP-loop with an identity e.

4 Permutations of inversion systems and matrices of 4-IP-loops

The obtained results relative to 4-IP-loops that are not 4-TS-loops and, in contrast to the ternary case. Another approach is required for the proof of analogous results.

Proposition 2. If Q() is a 4-IP-loop with an inversion matrix $[v_{ij}]$, $i \in \overline{1,4}$, $j \in \overline{1,5}$ and with an identity e, then any non-identity inversion permutation in even power of any inversion system does not leave fixed the identity e.

Corollary 2. If Q() is a 4-IP-loop with an inversion matrix v_{ij} , $i \in \overline{1,4}$, $j \in \overline{1,5}$, and with an identity e, then any non-identity inversion permutation of any inversion system only in odd power leaves fixed the identity e.

These results are used in the proof of the following

Theorem 2. The matrix $[I_{ij}]_e$ is an inversion matrix for any 4-IP-loop with an identity e.

The question about existence of the matrix $[I_{ij}]_e$ for any n-IP-loop, n > 4, is still opened.

References

- [1] V. D. Belousov. *n-Ary quasigroups* Ştiinţa, Chişinău, 1972 (Russian).
- [2] L. A. Ursu, *n-Ary loop with the inverse property* . Matem. Issled., vyp. 113, Ştiinţa, Chişinău, 1990, pp. 108–118 (Russian).
- [3] L. A. Ursu, About one of inverse matrices of a nonsymmetric n-IP-loop, CAIM, Communications, Chişinău, 2012, pp. 216.

Leonid A. Ursu

Technical University of Moldova Email: leonidursu410gmail.com