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CONDITIILE INVARIANTE DE STABILITATE ALE MISCARII PENTRU
UNELE SISTEME DIFERENTIALE PATRUDIMENSIONALE

Rezumat. Au fost obtinute conditiile centroafin invariante de stabilitate a miscarii neperturbate pentru
sistemul diferential patru dimensional patratic de tip Darboux in conditia invariantd nedegenerata.
Cuvinte-cheie: sistemul diferential, miscarea neperturbata, invariant, comitant, algebra Lie, stabilitatea.

1. Introduction

In mathematics, stability theory addresses the stability of solutions of differential
equations and of trajectories of dynamical systems under small perturbations of initial
conditions.

The differential systems with polynomial nonlinearities are important in various
applied problems. For example: the Van der Pol oscillator; the Fitzhugh—Nagumo model
for action potentials of neurons; in seismology to model the two plates in a geological
fault; in studies of phonation to model the right and left vocal fold oscillators as well as
many other applications.

The stability of unperturbed motions using the theory of algebras, of invariants and
of Lie algebras was studied for the first time in [1].

In [2] the center-affine invariant conditions of stability of unperturbed motion,
described by critical two-dimensional differential systems with quadratic nonlinearities
s(1; 2), cubic nonlinearities s(1; 3) and fourth-order nonlinearities s(1; 4), were obtained.

In this paper, the similar investigations are done for some four-dimensional
differential systems with quadratic nonlinearities.

2. Center-affine invariants and mixt comitants for four-dimensional differential
system with quadratic nonlinearities
We consider the system of differential equations

j _ _ . —
%:aix“+a;ﬁx“xﬁzPJ(x,a) (j,a,ﬁ=1,4), (1)
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where a(iﬂ Is @ symmetric tensor in lower indices in which the total convolution is done,
and the group of center-affine transformations GL(4,R) given by formulas

X =ax, det(qf)0; (r.j=14), @
Coefficients and variables in (1) are given over the field of real numbers R . The phase
variables vector x=(x',x*,x°,x*) of system (1), which changes by formulas (2), is usually
called contravariant [3]. Any other vector y:(yl, yz,ys,y“) which changes by formulas

(2), is called cogradient with vector x. The vector u=(u,u,,u;,u,), which changes by

formulas
0, =plug, (rj=14), 3)
where p{g.) =&, is the Kronecker’s symbol, is called covariant. The vector u is also

called contragradient with vector x.

Applying the transformation (2), the system (1) will be brought to the system
ax’
dt

in which the coefficients are linear functions of the coefficients of system (1) and are

rational functions of parameters of transformation (2). We will denote the set of

coefficients of system (1) by a, the set of coefficients of transformed system (4) by a,

and the set of parameters of transformation (2) by q.

—a)x" +a, %%’ (ja,f=14), @)

According to [3], we say that the polynomial k(x,u,a) of the coefficients of system (1)
and of the coordinates of vectors x and u is call mixt comitant of the system (1) with
respect to GL(4,R) group, if the following identity holds

k(x,u,a)=A"-k(x,u,a), (5)
for all g from GL(4,R) and every coordinates of vectors x and u, as well as all the
coefficients a of system (1), where g is an integer number called the weight of comitant.

If the mixt comitant k does not depend on the coordinates of the vector u, then we call it
simply comitant, but if k does not depend on the coordinates of the vector x we call it
contravariant. If k does not depend on x and u, then we will call it invariant of system
(1) with respect to GL(4,R) group.

The following center-affine invariant polynomials of the system (1) are known from [4]:

_aa _ nanf _ aanfay _ n@nfarad
lL,=a,, l,,=aa,, |,,=a’aja;, |,,=asa a;a,

—_ % yb — A%l Y —a%aB a7 o — A% B A7 A0 yH

Pl,4—aaﬂx , P2|4—aﬁaayx , PSA_ayaa ays X, P,,=a;5a) aza, x",

— A% aB AaY A0Aak AV Oy P W T _ a — B
Kes =8y &, @ a8 8 X' XXX € 55, 94 =U, X", S, =a,X"U,,
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— a2l — n%aB a7 o R —Aa%af a7 adgkav pars
S,s=aya xuy, S;,=ajaa;x°u,, Ry, =aja;aza’ajauuuue,

uosa Ty
aSi—14

R6,4 - det[ 8le j ’ K1.4 = agy X"X yazﬂgayo‘ﬂ’ (6)
ij

i,j=L

ﬁ )

li4 (i =1,_4) are invariants, P, (i =1_4) and Kg, are comitants, S, (j =O,_3) are

mixed comitants, Rg, is contravariant, and K, ,is comitant of cogradient vectors x, v,

z [3]. The vectors &,55, and & are four-dimensional unit vector with coordinates 1

when an even permutation of the indices holds, -1 when an odd permutation of the
indices holds and 0 in other cases.
Remark 1. The characteristic equation of the system (1) has the form

p4+L1’4p3+|_2’4,02+L3'4p+L4,4=O, (7)
where the coefficients of equation (7) are invariants of system (1) and have the following
form:

1

La=—l. L2,4:_(|12,4_|2,4)’ L3v4:6(3|1‘4|2'4_2|3‘4_|f4)’

1

L,,=—
24

(8|1,4|3,4—6|4,4—6|f4|2,4+3|§,4+|;}4), @

where 4 (i=1'4) from (6).

3. Invariant conditions of stability of unperturbed motion for system (1) in case
when the roots of the characteristic equation have nonzero real parts

Definition 1. If for any small positive value ¢, however small, one can find a positive

number & such that for all perturbations x!(t,) satisfying the condition

2

> (X)) <5, (9)

=1
2

2 .
the inequality Z(Xj(t)) <g, is valid for any t=>t,, then the unperturbed motion

j=1
x'=0 (jzl,_4) is called stable, otherwise it is called unstable. If the unperturbed

motion is stable and the number & can be found however small such that for any
2

2 -
perturbed motions satisfying (9) the condition !imZ(x‘(t)) =0,is valid, then the
-0 =)

unperturbed motion is called asymptotically stable.
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By means of the Lyapunov theorems on stability of unperturbed motion by the
signs of the roots of the characteristic equation (7) of system (1) and the Hurwitz theorem
on the signs of the roots of an algebraic equation (see, for example, [5]) we have
Theorem 1. Assume that the center-affine invariants (8) of system (1) satisfy inequalities

Li,4 >0 (i :]-1_4) ’ L1,4|-2,4L3,4 - L§,4 - Li4|-4,4 >0.
Then the unperturbed motion x' =0 (j =l,_4) of this system is asymptotically stable.

Theorem 2. If at least one of the center-affine invariant expressions (8) of system (1) is

negative, then the unperturbed motion x’ =0 (j :1,_4) of this system is unstable.

4. Invariant conditions of stability of unperturbed motion for system (1) in case
when the characteristic equation has one zero root in conditions §e,4 =0, KM =0

Lemma 1. [4] If in (6) we have K1,4 =0 then the system (1) takes the form

dx! i . (a1 va\ (i . T

A 2x (al,x) (J,a_1,4). (10)
The system (10) is called four-dimensional differential system of Darboux type.

Remark 2. The expression Kg,=0 from (6) is the invariant partucular GL(4,R)-
integral of system (10).

Remark 3. For any center-affine transformation of the system (6), its quadratic part
retains its form changing only the variables and coefficients. This follows from the fact

that the identity K1,4 =0 is preserved under any center-affine transformation.
From [4] with considering Remark 3 it follows
Lemma 2. If in system (10) we have R, =0, then by the center-affine transformation

gl _ 52 _ 3 _ g4 _
X"=S,,, X°=3,,, X’=5,,, X' =35,,,

the system (10) can be brought to the following form :

Xt = x4+ 2x1(a11ax“), X% = X%+ 2x2 (ailax“), X =x*+2x3 (allax“),
X' ==L, X' — L, x* =L, ,x° — L ,x* +2x° (allax“), (11)
where S, (i =ﬁ) are from (6) and L, (j =1,_4) are from (8).

Definition 2. The differential system (1) will be called a critical system of Lyapunov type
if the characteristic equation of the system has one zero root and all other roots have
negative real parts.

Notice that for system (11) the characteristic equation coincides with equation (7).
Lemma 3. The system (1) or (11) is critical of Lyapunov type if and only if the following
invariant conditions hold:
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L,,=0 L,>0 (i=123), L,L,,-L,>0 (12)
where L, (j :1,_4) are from (8).

The proof of Lemma 3 follows from the Hurwitz theorem on the signs of the roots
of an algebraic equation and from equation (7) (see, for example [5]).

Notice that the system (11) in invariant conditions (12) by the center-affine
transformation

X =L X +L X +L X +x!, x2=x* x°=x°, x'=Xx,
can be brought to the canonical form
x=2x(ax+by+cz+du), y=z+2y(ax+by+cz+du),

z=x-L,,y-L,z—L, ,u+2z(ax+by+cz+du), u=y+2u(ax+by+cz+du). (13)

According to Lyapunov’s theorem [6], we will build the power series by which we can
determine the stability of unperturbed motion of system (13). The first equation in system
(13) is called the critical equation, and the other three are called non-critical equations.
Using the algorithm from Lyapunov’s theorem [6] we examine the equations generated
by right-hand sides of latest three equations of system (13). We have non-critical
equations  z+2y(ax+by+cz+du)=0, x-L,,y-L,z—L,,u+2z(ax+by+cz+du)=0,

y+2u(ax+by+cz+du)=0.
We express x, y and z from non-critical equations in the following way:
y =—2u(ax+by+cz+du), z=-2y(ax+by+cz+du),

u=_ —LZ"‘y—L“z+ 22(
L3,4 L3,4 L3,4 L3,4
We will seek x, y and z as a holomorphic function on x. Then we can write
y(X) = AX+AX* + AX’ +..., 2(X) =Bx+Bx* +Bx*+..., u(x)=Cx+C,x* +C,x*+... (15)
Substituting (15) into (14) we get
AX+AX+AX +...=2(Cx+Cx* +C,x° +..)[ax +b(AX+ AX* + AX® +..) +

+C(B X+ B,X* + B,X® +...) +d (C x + C,x* + C,;x° +...)],

ax+by+cz+du) (14)

B X+ B,X* + ByX® +... = —2(AX+ A X + AX +..)[ax +b(AX+ AX* + AxX® +..) +
+C(B X+ B,X* + B,X* +...) +d(Cx+C,x* + C.x° +...)],
C 2 3 _ X L2,4 2 3 L1,4 2 3
X+C X +CX +...=— ——— (AX+ AX + AX +...) ———(BX+B,Xx" +Bx" +...)+
L. L. s
+2(Bx+B,X* + B,x* +...)[ax +b(AX + AX? + AX® +..) +C(B X+ B,X* + Bx® +...) +
+d (Cx+C,x* +Cx° +..)].
This implies that A =0, B, =0, Cl:l_%' A, =-2C,(a+dC)), B, =0,

4
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_2CL,,(a+dC)
L.

C3 - L3i [Az L1,4 (a + dcl) + bA2C1L2,4 + Cz L2,4 (a + ZdCl)]’

4

C,

A, =-2[bAC,+C,(a+2dC))], B,=-2A(a+dC),

A, =-2[C (bA, +¢cB;)+C,(bA, +dC,)+C,(a+2dC,))], B,=-2[A(a+dC)+ A (bA, +dC,)],

C,= i[(Bs + AL )(@+dC) + (AL, +C,L, )(BA, +dC,y) +CiL, , (bA, +CB;) +

4
+C;L,,(a+2dC))],... (16)
Substituting (15) into right-hand side of the critical equation (13) we get
2x(ax+by +cz+du)=Dx+ D,x* + D,x° +...,
or in expanded form we get
2x[ax +b(AX+ AX? + AX® +...) +c(BX+B,x* + B,x* +..) +d (Cx +C,x* +C,x° +...)] =
= DX+ D,x* + D,X° +...,
This implies that
D, =0, D,=2(a+dC)), D,=2(bA,+dC,), D, =2(bA, +cB,+dC,),

D, =2(bA, +¢B, +dC,), D, =2(bA, +cB, +dC,), D, =2(bA, +cB,+dC,),...  (17)
Using the Lyapunov’s theorem, in [7] was obtained
Lemma 4. The stability of the unperturbed motion corresponding to system (13) is

described by one of the following two possible cases:
1) L,,a+d =0, then the unperturbed motion is unstable ;

2) L,,a+d =0, then the unperturbed motion is stable.

In the latter case the unperturbed motion belongs to some continuous series of stabilized
motions, and moreover, if perturbations are small enough then perturbed motion will tend
Asymptotically to one of stabilized motions.

Proof. According to Lyapunov’s theorem on stability of unperturbed motion in critical
case [6], we examine the coefficients D, from (17) taking into account (16). If D, =0,

then we have first case from Lemma 4. If D, =0, then we obtain A =B, =C, =0 (i>2)
from (16), therefore D, =0,i=123,.... According to Lyapunov’s theorem we have the
second case of this lemma. Lemma 4 is proved.

Theorem 3. Let for differential system of the perturbed motion (1) the invariant
conditions R;, =0, KH =0 Dbe satisfied. Then in conditions (12) the stability of
unperturbed motion corresponding to this system is described by one of the following
two possible cases:

1) 4(0%,R, -31,,1,,P,+21,,R,)-15(1%P,, ~1,,P,, —2I,,P,, +2P,,) =0, then the

14

unperturbed motion is unstable;
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1) 4(1:,R,-31,,1,,R,+21,,R,)-15(1%R,, —1,,P,, —21,,P,,+2P,,)=0, then the

unperturbed motion is stable.
In the latter case the unperturbed motion belongs to some continuous series of stabilized
motions, and moreover, if perturbations are small enough then perturbed motion will tend

Asymptotically to one of stabilized motions. The invariant polynomials I, (i =1,4) and
P., (j=14) aregiven in (6).

Proof. Using the system (13), obtained as a result of center-affine transformation in
conditions R;,#0, K ,=0 and (12) with the help of the invariant polynomials
., (i=14) and P, (j=14) from (6), we obtain

4('1?,)4P1,4 _3|1,4|2,4Pl,4 +2|3,4Pl,4) _15(|12,4P2,4 - |2,4P2,4 _2|1,4P3,4 + 2P4,4) = 30(L3,4a+d)x.

Consequently taking into account Lemma 4 we obtain truth of this theorem. Theorem 3 is
proved.

5. Invariant conditions of stability of unperturbed motion for system (1) in case
when the characteristic equation (7) has two pure imaginary roots in conditions

|§6’4 #0, K1,4 =0

Lemma 5. The characteristic equation (7) has two pure imaginary roots A+—1 and

—JJ-1 and the other two real and negative if and only if the following invariant
conditions

Le>0 Ly>0 Ll —L,>0 L,L,+L5,-L,L,L,=0 (18
hold, where L, (i=14) are from (8).
Proof. Denote by o (i =1,_4) the roots of characteristic equation (7). According to
Vieta's theorem we have

PP+t ==La 00+ 00+ PP+ PP+ PaPs+ PiPs = Lo
PPPs+ PPy + PiPsPs+ PoPsPs =—Lsar PP2PsPy = Ly s (19)

Let us suppose that p, =i and p, =—Ai (i*=-1), where A =0 is real number. From
(19) we obtain

pst+py=—L,, A2 + 00 =Ly, 22 (Ps+ps) = L. 12,03,04 =L, (20)
From the first and third equalities (20) we get
Y

A=+ [ (L.L,>0). (21)
4

Taking into account the first and second equalities from (20) we obtain



L :
'01'2+L1,4pj+|—2,4__’4:0 (1=34). (22)
Lya
Using the Hurwitz theorem on the signs of the roots of an algebraic equation [5] and the

inequality (21) we get first three conditions from (18). Substituting p,p, from second
equality (20) into last equality (20) we obtain equality from (18). Lemma 5 is proved.
Lemma 6. The characteristic equation (7) has two pure imaginary roots Av—1 and
—AJ-1 of multiplicity 2 if and only if the following invariant conditions

L,>0 L,=L,=1,-4L,,=0 (23)
hold, where L,, (i=14) are from (8).

Proof. Let us suppose that

p=p, =AM, py=p,=-A, (24)
where A =0 is real number. From (19) we obtain
L.=L,=0 24% = Lo s At = Lyse (25)

Because A =0 is real number, from (25) we get

p=t L, (L.>0) (26)

L§,4 -4L,,=0. (27)

The conditions (25)-(27) coincide with (23). Lemma 6 is proved.
Theorem 4. Let for differential system of the perturbed motion (1) the invariant

and

conditions R, #0, KM =0 be satisfied. Then this system by center-affine
transformation can be reduced to the form (x=x', y=x%, z=x% u=x")
a) in conditions (18):
X=—Ay+2X-w =P, y=AX+2y-w=Q, Z=u+2z-y =R, (28)
U=y+(*-L,,)z-L u+2u-y =S,
where A is from (21), L, is from (8) and y = Ax+By+Cz+Du with A B, C, D real

constants.
b) in conditions (23):
X=—AY+2X-y, Y=AX+2y-w, Z=u+2z-y, U=y-A°z2+2u-y, (29)
where A is from (26), L, is from (8) and y = Ax+By+Cz+Du with A B, C, D real

constants.
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Proof. a) As shown in the Lemmas 1 and 2 in conditions R, #0, KM =0 the system
(1) by the center affine transformation is reduced to the form (11). In the case (18) the
system (11) has the form (x=x', y=x*,z=x},u=x* a;, =@, a, =, a, =7, al, =9)

2
X=y+2X-®, y=z+2y-®, 2=u+2z-D, U:b;?Cdx+by+cz+du+2u-CD, (30)

where
b=-L, c=-L,, d=-L, ®=ax+py+yz+du (a,B,7,6€R). (31)
Let’s consider the transformation
X =—(C+A)y—dz+u, Y =—A(Cc+A)x—dAy+1z, Z=1x, U =1y, (32)

b
where according to (21) and (31) we have 4° = q and determinant A =—1°#0.

Making the transformation (32) in the system (30)-(31) we obtain for it the form (28).
b) In the case (23) the system (11) has the form
X=y+2X- D, y=7+2y-®, 2=u+2z2-®, Ui=—A*'x—21%2+2u-D, (33)
where

®=ax+by+cz+du, A=+ L“ , L,=L,=0 L, =4L,,. (34)

Let’s consider the transformation
X =22y+u, Y =X+ Az, Z=x, U = 1y. (35)
According to (16) the determinant of transformation (35) is A=-A4°=0.

Making the transformation (35) in the system (33)-(34) we obtain for it the form (29).
Theorem 4 is proved.

6. The theorem on the integrating factor for a four-dimensional differential system
Let's suppose that the system (1) admits the (n—1) - dimensional commutative Lie
algebra with operators

(x)— (i=14 a=13), (36)

and
A=Pi(xa)-2 (i=14) (37)
ox’

Let’s consider the determinant constructed on coordinates of operators (36)-(37)
& & & &
1 2 3 4
a2 2 2o 9
S & S %
Pl PZ P3 P4
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Theorem 5. [4] If the four-dimensional differential system (1) admits three-dimensional
commutative Lie algebra of operators (36), then the function y:% where A=0 from

(38) is the integrating factor for Pfaff equations

& & & & & & &L & & : & &
& & SI-|g & GlaHg & &g & &|d =0,
P2 P3 P4 Pl P3 P4 Pl P2 P4 Pl P2 P3
& & & & & & & & & & &
& & SI-|g & Gd+E & &g & &d =0,
P2 PS P4 Pl P3 P4 Pl P2 P4 Pl PZ PS
& & & & & & & & & & & &
& & Glik-|g & GG & Gldd g & &dx' =0, (39)
P2 P3 P4 Pl P3 P4 Pl P2 P4 Pl PZ P3

that determine the general integral of system (1).

7. The Lie algebra of operators admitted by the system (28). Some particular
integrals and one first integral of Darboux type
Lemma 7. The Lie algebra of operators admitted by the system (28) has the form

X, =[(Bd —=D)A(C+ A%)x+ AdA(C+ A%)y — 20,X* + 20,,XZ + 2C¢2XU]§+
+H-AdA(c+ A%)x+(Bd — D)A(C+ A%)y — 20Xy + 200,00, yZ + 2C<p2yu]§+
HAC+A?)Y+(C+A%)p,2— 20,2+ 20,0,2° + ZC(pzzu]§+
HAA(C+A%)X+(C+ A*)@,u— 20, XU + 20,0,2U + 2C(p2u2]%,

X, =[A(C+A%)p X+ AL(C+ A°)(C+2A%)Y — 20,X* + 2,0, XZ + 2C/1(o6xu]§ +
H=AL(C+ A%)(C+2A%)X+ A(C+ A% @Y — 200,XY + 2 A0, YZ + 2C A, yu]%+
HAA(C+A%)X+ A(C+ A%) 0,2 — 20, X2 + 2A,0,2° + 2C/1¢62u]§ +
H=AL?(C+A%)y + A(C+ A7) U — 20, XU + 21 0,0,2U + ZCM)GUZ]%,

X, =[-BA(C+A%)X— AA(C+ A%) Y + 20, X* + 200, X7 + 2¢9xu]§+

HAA(C+A?)X—BA(C+A?)Y + 20Xy + 2, yZ + 2¢9yu]§+
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H-BA(C+A%)Z+ A(C+ A*)U+2¢,X2 + 2, 2° + 2¢gzu]§+
HAC+A?)Y+AC+A%)’z+(Ad = BA)(C+ A*)U + 20, XU + 2¢9,2U + Z(pguz]%,
X, =[Ac+A%)Xx=2(p, — BA?)X* + 2A(C+ A*) Xy — 21, X2 +20/Ixu]§+
HA(C+ A%y —2(p, —BA*)xy +2A(C+ A%)y* —2A¢,, Yz + 2Ciyu]%+
HA(C+A%)2—2(p, —BA®)xz +2A(C+ A%)yz — 24, 2° + ZC/izu]%Jr

HA(C+A%)U—2(p, — BA*)xu +2A(C+A*)yu —2A¢,,2u + ZCluz]a%, (40)
where
@, = (A% +B?)cd — BCd — BDc+CD — ACA + (A%d + B2d — BD)A?,
@, = Ac+(Bd —D)A+2A1%, ¢@,=-Cd+(c+A%)D,
@, =—2BCc+C2 + A(Cd — DC) A +3(A%C + B2 — BC) A2 — ADA® + (A% + B?)(c +24%),
@, =B(C+24%)—C, ¢, =B(c+24°)—-C—AdA, ¢, =(A’+B?)(c+A1%)—BC,
@, = AC(C+42)+B(Cd —Dc)A—BDA®, ¢, = AD(c+4%)—BCA, ¢,=Cd—cD—DA% (41)

Proof. Writing the operators (36) in a general form X :gj(x)£ and solving the

determining equations
P +ELP P+ EL P =PI+ E°PL + EPL+E'PL, (j=1,4)
we obtain that the system (28) admits the operators (40)-(41).
The operators X, (i=1,2,3,4) are linearly independent, since the determinant of fourth
order constructed on coordinates of these operators is different from zero. Notice that
commutators  [X;, X;1=0, (i, ] =1,4). Therefore operators X, (i=14) form a four-
dimensional Lie algebra. Further, using the theorem 5 on integrating factor we calculate
determinant x which is constructed on the coordinates of three operators X, (i=1,2,3,4)
and on the right-hand sides of the system (28), we obtain
Fagy = Moy =0, fhyy = A'BAC+A") 616,65, fhpy =—AAUC+A") 6,656,
where
G, =X +Y’, ¢,=2°+cA-2(Bc—C+BA*)x+2A(c+A%)y+2A(-Cd +cD+DA?)z +2CAu,
¢, = A°X2 +dAxy +cdAxz + A(2c+d* +4A%)xu—(C+ A?)y* —[2¢® +(6C +d?)A* +4A%]yz —
—cdyu —[c® +c(5¢c+d?*) A% + (8c+d*)A* +44°]2° —[¢® + (4c +d?) A% + 44| (dzu —u?). (42)

We denote the operator of system (28) by A = P§+Q%+ R§+ S i. Then we obtain

0z ou
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Ag) =4qy, M) =26y, Ag)=c(d+4w), Alss))=2Qa+p)sisiv,
where y = Ax+ By +Cz+Du.
From the last equalities we get
Theorem 6. The functions ¢, ¢,, ¢, from (42) are particular integrals of the system (28)
and the function F =¢,g,” is a first integral of Darboux type for this system.
Remark 4. The comitant K., from (6) for the system (28) has the form K, =Acg;,
where 4 from (21) and ¢,, ¢, are from (42).

8. The Lie algebra of operators admitted by the system (29). Some particular
integrals and one first integral of Darboux type
Lemma 8. The Lie algebra of operators admitted by the system (28) has the form

Y, =[A°Xx=2(C + BA®)X* + 2AA°xy + 2DA°xz — 2C/1xu]§+
A%y —2(C+BA*)xy + 2A1%y* +2DA%yz — ZC/lyu]% +
+[A%2-2(C +BA*)xz +2A1%yz +2DA%2° — ZClzu]g +
2% —2(C +BA%)xu+2A1%yu +2DA%zu — ZCZUZ]%,

Y, =[-DA*x+2(CD - ACA+BDA*)x* —2D’A°xz + 2CD/1XU]§ +
+[-DA%y +2(CD — ACA + BDA?)xy — 2D?A%yz +2CD/1yu]%+
A1’y —DA%’z+2(CD - ACA+BDA*)xz—2D*2%2% + 2CDAZU]§ +
+[A2*x— DA% +2(CD — ACA + BDA)xu — 2D%A%2u + ZCDxluz]a%,

Y, =[-BA*X— AA%y + 2EX? + 24%(AC — BDA)xz + 24(BC + ADz)xu]§+
+HAL’x—BA’y + 2Exy + 24*(AC —BDA)yz + 2A(BC + AD/”t)yu]%Jr
+[-BA%Z + Ad2U + 2Exz + 242(AC — BDA)z? + 2A(BC + AD&)ZU]% +
+AL%y — A1*z —BA’u+2Exu + 24°(AC —BDA)zu + 2A(BC + AD/l)uz]%,
Y, =[-A*(C+BA%)x— A2’y + 2HX* — 2A°Fxz + ZZGxu]g +

HALXx—A%(C +BA?)y + 2Hxy — 21°Fyz + ZﬂGyu]%Jr
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AL Xx—2%(C+BA*)z+ AL'u+2Hxz — 2A°Fz% + 2/1qu]§+
z

+—Mﬁz—/13(C+B/12)u+2qu—2&3qu+MGuz]§, (43)
u

where E =BC+ (A +B?*)A%, F =CD-ACA+BDA?, G=C*+BCA*+ADA?,
H =C?+BCA® + ADA® +(A* + B) A"
The proof of Lemma 8 is similarly with the proof of Lemma 7.
The operators VY, (i=1,2,3,4) are linearly independent, since the determinant of fourth
order constructed on coordinates of these operators is different from zero. Notice that
commutators  [Y,,Y;1=0, (i, ] —1,4). Therefore operators Y, (i=1,4) form a four-
dimensional Lie algebra. Further, using the theorem 5 on integrating factor we calculate
determinant x which is constructed on the coordinates of three operators Y, (i=12,3,4)
and on the right-hand sides of the system (29), we obtain
Loy =tz =0, fhy, = _A22'7(02¢7 Hozy = ~-A’ Bl7§92¢,

where

p=xX+Yy*, ¢=2>-2(C+BA*)x+2A1%y+2DA%z—2CAu, (44)
Direct calculation of the operator A for the system (29) gives

Ao)=4py, Ag)=20y, Ag"¢")=2Qa+pe ¢y,
where y = Ax+ By +Cz + Du.

From the last equalities we get
Theorem 7. The functions ¢ and ¢ from (44) are particular integrals of the system (29)

and the function F =g is a first integral of Darboux type for this system.
Remark 5. The comitant K., from (6) for the system (29) has the form K, =A%,
where 4 from (26) and ¢ are from (44).
Remark 6. The first integral F =¢¢,” of the system (28) is the holomorphic integral of
Lyapunov type, i.e. this integral can be written in the form F =x*+y?+F(x,y,zu),
where F(x,y,z,u) is the polynomial of the order more than two.

From [4] it is known the comitant of system (1) in the form

4
CI)4,4 = L4,4 o 2(5 L3,4 P1,4 + L2,4P2,4 + L1,4 Ps,4 + P4,4j’ (45)
where P, (j=14) are from (6) and L, (i=14) are from (8).

Remark 7. The comitant @, , for the system (28) has the form ®,, =—A4¢,, where &, is

from (42).
Using the Lyapunov’s theorem [6], the theorems 6-7 and remarks 6-7, we obtain
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Theorem 7. [8] Assume for the system (1) with K, =0 and R, =0 under center-affine

invariant conditions (18), the comitant (45) is not identically zero. Then the system has a
periodic solution containing an arbitrary constant, and varying this constant one can
obtain a continuous sequence of periodic motions, which comprises the studied
unperturbed motion. This motion is stable and any perturbed motion, sufficiently close to
the unperturbed motion, will tend asymptotically to one of the periodic motions.
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