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In [1-7] the authors proved that there are at least 1879 (and at most 1880) different geometric
configurations of singularities of quadratic differential systems in the plane. This classification is
completely algebraic and done in terms of invariant polynomials and it is finer than the classifica-
tion of quadratic systems according to the topological classification of singularities.
The long term project is the classification of phase portraits of all quadratic systems under topo-
logical equivalence. A first step in this direction is to obtain the classification of quadratic systems
under topological equivalence of local phase portraits around singularities.
In this paper we extract the local topological information around all singularities from the 1879
geometric equivalence classes. We prove that there are exactly 208 topologically distinct global
topological configurations of singularities for the whole quadratic class. From here the next goal
would be to obtain a bound for the number of possible different phase portraits, modulo limit
cycles.
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We consider a system of differential equations of the form [1, 2]

dx

dτ
= X(τ, xΛ, ϕΘ),

dϕ

dτ
=
ω(τ)

ε
+ Y (τ, xΛ, ϕΘ)

with initial conditions, multipoint and boundary integral conditions, for example [3],

a(τ0) = a0,

τ2∫
τ1

[ s∑
j=1

bj(τ, aΛ(τ))ϕθj (τ) + g(τ, aΛ(τ), ϕΘ(τ))

]
dτ = d.

Here 0 ≤ τ ≤ L, x ∈ D ⊂ Rn, ϕ ∈ Tm, Λ = (λ1, . . . , λp), Θ = (θ1, . . . , θq), λi, θj ∈ (0, 1),
xλi(τ) = x(λiτ), ϕθj (τ) = ϕ(θjτ), ε ∈ (0, ε0], ε0 � 1, 0 6 τ0 6 L, 0 6 τ1 < τ2 6 L.
The complexity of the research of the problem is the existence of resonances. Resonance condition
in point τ ∈ [0, L] is

q∑
ν=1

θν(kν , ω(θντ)) = 0, kν ∈ Rm, ‖k‖ 6= 0.

Averaging in system (1) is carried out on fast variables ϕΘ on the torus Tm. The averaged problem
takes the form

dx

dτ
= X0(τ, xΛ, ),

dϕ

dτ
=
ω(τ)

ε
+ Y0(τ, xΛ),

a(τ0) = a0,

τ2∫
τ1

[ s∑
j=1

bj(τ, aΛ(τ))ϕθj (τ) + g0(τ, aΛ(τ))

]
dτ = d.

The existence and uniqueness of solution of the problem and the estimation error ‖x(τ, ε)−x(τ)‖ ≤
c1ε

α, where α = (mq)−1, c1 = const > 0 of averaging method is obtained.
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