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Consider the family of planar cubic polynomial differential systems. Following [1] we call con-
figuration of invariant lines of a cubic system the set of (complex) invariant straight lines (which
may have real coefficients), including the line at infinity, of the system, each endowed with its own
multiplicity and together with all the real singular points of this system located on these invariant
straight lines, each one endowed with its own multiplicity.
Our main goal is to classify the family of cubic systems according to their geometric properties
encoded in the configurations of invariant straight lines of total multiplicity seven (including the
line at infinity with its own multiplicity), which these systems possess.
Here we consider only the subfamily of cubic systems with four real distinct infinite singularities
which we denote by CSL4s∞

7 . We prove that there are exactly 94 distinct configurations of invari-
ant straight lines for this class and present corresponding examples for the realization of each one
of the detected configurations.
We remark that cubic systems with nine (the maximum number) of invariant lines for cubic sys-
tems are considered in [2], whereas cubic systems with eight invariant lines (considered with their
multiplicities) are investigated in [3-7].
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Let us consider the system of differential equations of the fifth degree

dx

dt
= P0 +

5∑
i=1

Pi(x, y),
dy

dt
= Q0 +

5∑
i=1

Qi(x, y), (1)

where Pi(x, y), Qi(x, y) are homogeneous polynomials of degree i in x and y with real coefficients.
The following GL(2,R)-comitants [1] have the first degree with respect to the coefficients of the
system (1):

Ri = Pi(x, y)y −Qi(x, y)x, i = 0, 5

Si =
1

i

(
∂Pi(x, y)

∂x
+
∂Qi(x, y)

∂y

)
, i = 1, 5. (2)

Using the comitants (2) as elementary ”bricks” and the notion of transvectant [2] the following


