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Let us consider the system of differential equations of the fifth degree

dx

dt
= P0 +

5∑
i=1

Pi(x, y),
dy

dt
= Q0 +

5∑
i=1

Qi(x, y), (1)

where Pi(x, y), Qi(x, y) are homogeneous polynomials of degree i in x and y with real coefficients.
The following GL(2,R)-comitants [1] have the first degree with respect to the coefficients of the
system (1):

Ri = Pi(x, y)y −Qi(x, y)x, i = 0, 5

Si =
1

i

(
∂Pi(x, y)

∂x
+
∂Qi(x, y)

∂y

)
, i = 1, 5. (2)

Using the comitants (2) as elementary ”bricks” and the notion of transvectant [2] the following
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GL(2,R)-comitants of the system (1) were constructed:

K001 = R0, K002 = (R0, R1)(1),

K101 = R1, K102 = S1,

K103 = (R1, R1)(2), K201 = R2,

K202 = (R2, R1)(1), K203 = (R2, R1)(2),

K204 = ((R2, R1)(2), R1)(1), K205 = S2,

K206 = (S2, R1)(1), K301 = R3,

K302 = (R3, R1)(1), K303 = (R3, R1)(2),

K304 = ((R3, R1)(2), R1)(1), K305 = ((R3, R1)(2), R1)(2),

K306 = S3, K307 = (S3, R1)(1),

K308 = (S3, R1)(2), K401 = R4,

K402 = (R4, R1)(1), K403 = (R4, R1)(2),

K404 = ((R4, R1)(2), R1)(1), K405 = ((R4, R1)(2), R1)(2),

K406 = (((R4, R1)(2), R1)(2), R1)(1), K407 = S4,

K408 = (S4, R1)(1), K409 = (S4, R1)(2),

K410 = ((S4, R1)(2), R1)(1), K501 = R5,

K502 = (R5, R1)(1), K503 = (R5, R1)(2),

K504 = ((R5, R1)(2), R1)(1), K505 = ((R5, R1)(2), R1)(2),

K506 = (((R5, R1)(2), R1)(2), R1)(1), K507 = (((R5, R1)(2), R1)(2), R1)(2),

K508 = S5, K509 = (S5, R1)(1),

K510 = (S5, R1)(2), K511 = ((S5, R1)(2), R1)(1),

K512 = ((S5, R1)(2), R1)(2).

We denote by A the coefficient space of the system (1).
Definition 1. The set S of the comitants is called a rational basis on M ⊆ A of the comitants

for the system (1) with respect to the group GL(2,R) if any comitant of the system (1) with respect
to the group GL(2,R) can be expressed as a rational function of elements of the set S.

Definition 2. A rational basis on M ⊆ A of the comitants for the system (1) with respect to
the group GL(2,R) is called minimal if by the removal from it of any comitant it ceases to be a
rational basis. In [3] was established a method for construction the rational bases of GL(2,R)-
comitants for the bidimensional polynomial systems of differential equations by using different
comitants of the system. In this paper we will present a rational basis of GL(2,R)-comitants for
the bidimensional polynomial system of differential equations of the fifth degree in the case, when
the comitant of the linear part R1 6≡ 0. Theorem. The set of GL(2,R)-comitants

{K001, K002, K101, K102, K103, K201, K202, K203, K204, K205, K206,

K301, K302, K303, K304, K305, K306, K307, K308, K401, K402, K403,

K404, K405, K406, K407, K408, K409, K410, K501, K502, K503, K504,

K505, K506, K507, K508, K509, K510, K511, K512}
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is a minimal rational basis of the GL(2,R)-comitants for the system (1) of differential equations
of the fifth degree on M = {a ∈ A | R1 6≡ 0 (K101 6≡ 0)} .
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Let us consider the system of differential equations with nonlinearities of the fourth degree

dx

dt
= P1(x, y) + P4(x, y),

dy

dt
= Q1(x, y) +Q4(x, y), (1)

where Pi(x, y) and Qi(x, y) are homogeneous polynomials of degree i in x and y with real coeffi-
cients. We shall consider the following polynomials:

Ri = Pi(x, y)y −Qi(x, y)x; Si =
1

i

(
∂Pi(x, y)

∂x
+
∂Qi(x, y)

∂y

)
, i = 1, 4,

which in fact are GL(2,R)-comitants [1, 2] of the first degree with respect to the coefficients
of system (1). Let us consider the following GL(2,R)-comitants and GL(2,R)-invariants for
the system (1), constructed by using the comitants Ri and Si (i = 1, 4) and the notion of the
transvectant [3] (in the list below, the bracket ”[[” is used in order to avoid placing the otherwise
necessary parenthesis ”(”):

I1 = S1, I2 = (R1, R1)(2), I3 = [[S4, R1)(2), R1)(1), (S4, R1)(2))(1),

I4 = [[R4, R1)(2), R1)(2), R1)(1), ((R4, R1)(2), R1)(2))(1).

The system (1) can be written in the following coefficient form:

dx

dt
= cx+ dy + gx4 + 4hx3y + 6kx2y2 + 4lxy3 +my4,

dy

dt
= ex+ fy + nx4 + 4px3y + 6qx2y2 + 4rxy3 + sy4. (2)


